Classical electrodes for Li-ion technology operate by either single-phase or two-phase Li insertion/de-insertion processes, with single-phase mechanisms presenting some intrinsic advantages with respect to various storage applications. We report the feasibility to drive the well-established two-phase room-temperature insertion process in LiFePO4 electrodes into a single-phase one by modifying the material's particle size and ion ordering. Electrodes made of LiFePO4 nanoparticles (40 nm) formed by a low-temperature precipitation process exhibit sloping voltage charge/discharge curves, characteristic of a single-phase behaviour. The presence of defects and cation vacancies, as deduced by chemical/physical analytical techniques, is crucial in accounting for our results. Whereas the interdependency of particle size, composition and structure complicate the theorists' attempts to model phase stability in nanoscale materials, it provides new opportunities for chemists and electrochemists because numerous electrode materials could exhibit a similar behaviour at the nanoscale once their syntheses have been correctly worked out.
International audienceA new electrochemical cell has been specially designed for operando experiments at synchrotron facilities both for X-ray diffraction and X-ray absorption. It allows the investigation of insertion materials under high current densities (up to 5C rate) and hence to study complex phenomena of structural and electronic changes out of equilibrium. The LiFePO4-FePO4 system has been chosen as a case study to validate this cell, and tricky phenomena, with apparent delays in phase formation compared with the number of electrons exchanged, have been spotted
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.