Ancestral frogs underwent anatomical shifts including elongation of the hindlimbs and pelvis and reduction of the tail and vertebral column that heralded the transition to jumping as a primary mode of locomotion. Jumping has been hypothesized to have evolved in a step-wise fashion with basal frogs taking-off with synchronous hindlimb extension and crash-landing on their bodies, and then their limbs move forward. Subsequently, frogs began to recycle the forelimbs forward earlier in the jump to control landing. Frogs with forelimb landing radiated into many forms, locomotor modes, habitats, and niches with controlled landing thought to improve escape behavior. While the biology of take-off behavior has seen considerable study, interspecific comparisons of take-off and landing behavior are limited. In order to understand the evolution of jumping and controlled landing in frogs, data are needed on the movements of the limbs and body across an array of taxa. Here, we present the first description and comparison of kinematics of the hindlimbs, forelimbs and body during take-off and landing in relation to ground reaction forces in four frog species spanning the frog phylogeny. The goal of this study is to understand what interspecific differences reveal about the evolution of take-off and controlled landing in frogs. We provide the first comparative description of the entire process of jumping in frogs. Statistical comparisons identify both homologous behaviors and significant differences among species that are used to map patterns of trait evolution and generate hypotheses regarding the functional evolution of take-off and landing in frogs.
Summary While most frogs maximize jump distance as an escape behaviour, toads have traded jump distance for endurance with a strategy of hopping repeatedly. This strategy has enabled toads to expand across the continents as one of the most diverse groups of anurans. Multiple studies have revealed physiological endurance adaptations for sustained hopping in toads, however, the kinematics of their sequential hopping behaviour, per se, has not been studied. We compared kinematics and forces of single hops and multiple hopping sequences and quantified field performance of hopping behaviours in free ranging toads of three species and discovered a novel aspect of locomotion adaptation that adds another facet to their exceptional terrestrial locomotor abilities. We found that bouts of repeated hopping are actually a series of bounding strides where toads rotate on their hands and then land on their extended their feet and jump again without stopping. In addition, free‐ranging toads appear to use bounding locomotion more frequently than single hops. Bounding in toads has the advantage of maintaining velocity and producing longer jump distances. In comparison to single hops, cyclic bounding steps reduce energy expenditure and appear to provide limb loading dynamics better suited for potential cycling of elastic energy from stride to stride than would be possible with repeated single hops. This is the first case of the common use of a bounding gait outside of mammals. Bounding adds a key terrestrial locomotor trait to the toad's phenotype that may help explain their history of global expansion and the challenges to modern faunas as introduced toads rapidly invade new ecosystems today.
SUMMARYIn tetrapods, feeding behaviour in general, and prey capture in particular, involves two anatomical systems: the feeding system and the locomotor system. Although the kinematics associated with the movements of each system have been investigated in detail independently, the actual integration between the two systems has received less attention. Recently, the independence of the movements of the jaw and locomotor systems was reported during tongue-based prey capture in an iguanian lizard (Anolis carolinensis), suggesting a decoupling between the two systems. Jaw prehension, on the other hand, can be expected to be dependent on the movements of the locomotor system to a greater degree. To test for the presence of functional coupling and integration between the jaw and locomotor systems, we used the cordyliform lizard Gerrhosaurus major as a model species because it uses both tongue and jaw prehension. Based on a 3-D kinematic analysis of the movements of the jaws, the head, the neck and the forelimbs during the approach and capture of prey, we demonstrate significant correlations between the movements of the trophic and the locomotor systems. However, this integration differs between prehension modes in the degree and the nature of the coupling. In contrast to our expectations and previous data for A. carolinensis, our data indicate a coupling between feeding and locomotor systems during tongue prehension. We suggest that the functional integration between the two systems while using the tongue may be a consequence of the relatively slow nature of tongue prehension in this species. Supplementary material available online at
Detailed descriptions of tongue morphology of members of Squamata that refer to functional implications other than food processing are rare. Herein we focus on the morphology of the dorsal epithelium and internal structure of the tongue of the Leopard Gecko, Eublepharis macularius, emphasizing the foretongue and its relation to fluid uptake. We employ both scanning electron microscopy and serial histology to examine the morphology of the entire tongue, its component regions, and its situation in the oral chamber. We recognize five distinct morphological regions of the dorsal tongue surface, each of which is distinctive both morphologically and histologically. The foretongue bears papillae quite different in structure and spacing from those of all other tongue regions, and these non-glandular structures are involved in gathering and transporting fluid from the environment. Fluid unloaded from the foretongue in the region of the vomeronasal sinus is channeled through the network of cuboidal papillae and directed towards a pair of compartments lateral to the tongue in which fluid pools during a drinking bout. This allows the dorsal surface of the mid-and hind-tongue, which are involved in food processing and manipulation, to be largely segregated from the pathway of fluid flow. We relate our findings to descriptions of the tongue of other taxa, and propose functional hypotheses for the observed morphology. This study provides new anatomical information upon which future studies of the functional morphology of the buccal apparatus in the Gekkota can be based.
As a muscular hydrostat, the tongue undergoes complex deformations during most oral behaviors, including chewing and drinking. During these behaviors, deformations occur in concert with tongue and jaw movements to position and transport the bolus. Moreover, the various parts of the tongue may move and deform at similar timepoints relative to the gape cycle or they may occur at different timepoints, indicating regional biomechanical and functional variation. The goal of this study is to quantify tongue biomechanics during chewing and drinking in pigs by characterizing intrinsic deformations of the tongue across multiple regions simultaneously. Tongue deformations are generally larger during chewing cycles compared to drinking cycles. Chewing and drinking also differ in the timing of regional length and width, but not total length, deformations. This demonstrates functional differences in the temporal dynamics of localized shape changes whereas the global properties of jaw-tongue coordination are maintained. Finally, differences in the trade-off between length and width deformations demonstrate that the properties of a muscular hydrostat are observed at the whole tongue level, but biomechanical variation (e.g., changes in movements and deformations) at the regional level exists. This study provides new critical insights into the regional contributions to tongue deformations as a basis for future work on multidimensional shape changes in soft tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.