Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede to an automated fingerprint system for E-learning. The idea is to apply back propagation algorithm on a multilayer perceptron during the training stage. One of the advantages of this technique is the use of a hidden layer which allows the network to make comparison by calculating probabilities on template which are invariant to translation and rotation. Results come both from the NIST special database 4 and a local database, and show that a proposed method gives good results in some cases.
Faultless authentication of individuals by fingerprints results in high false rejections rate for rigorously built systems. Indeed, the authors prefer that the system erroneously reject a pattern when it does not meet a number of predetermined correspondence criteria. In this work, after discussing existing techniques, we propose a new algorithm to reduce the false rejection rate during the authentication-using fingerprint. This algorithm extracts the minutiae of the fingerprint with their relative orientations and classifies them according to the different classes already established; then, make the correspondence between two templates by simple probabilities calculations from a deep neural network. The merging of these operations provides very promising results both on the NIST4 international data reference and on the SOCFing database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.