This paper summarizes some applications of ultrasonic vibrations regarding heat transfer enhancement techniques. Research literature is reviewed, with special attention to examples for which ultrasonic technology was used alongside a conventional heat transfer process in order to enhance it. In several industrial applications, the use of ultrasound is often a way to increase productivity in the process itself, but also to take advantage of various subsequent phenomena. The relevant example brought forward here concerns heat exchangers, where it was found that ultrasound not only increases heat transfer rates, but might also be a solution to fouling reduction.
The present paper is devoted to experimental investigations of the flow and the associated heat transfer in two-dimensional microchannels. Scaling laws pertaining to the hydrodynamics and heat transfer in microchannels are not yet clearly established. The published results are affected by a significant scatter, owing to the various conditions used in the experiments, and, most likely, owing to the difficulty of measurements at micronic scales. The present facility was designed to modify easily the channel height e. It was then possible to investigate hydrodynamics and heat transfer in channels of height ranging from 1 mm, which corresponds to conventional size, up to 0.1 mm, where size effects are expected. Size effects were therefore tested in the same setup and with the same channel walls for all the experiments, which were carried out with demineralized water. Measurements of the overall friction coefficient and of local Nusselt numbers show that the classical laws of hydrodynamics and heat transfer are verified for e>0.4 mm. For lower values of e, a significant decrease of the Nusselt number is observed whereas the Poiseuille number keeps the conventional value of laminar developed flow. The transition to turbulence is not affected by the channel size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.