The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].
Direct assessment of Salmonella numeration is still a challenge in cases of numerous number of low Salmonella/competitive flora ratio samples. Nowadays the usable methods provide data with such large confident intervals that the obtained results do not justify the labor and time spent. So we developed a method based on miniaturization of the dilution, preenrichment and selective enrichment on MSRV steps and on automation as the transfers are performed with multichannel pipettes. This so called mini‐MSRV method provides a rapid and convenient way to assess the quantification Salmonella in studies providing many samples. After description of the method, this paper presents the results obtained from 3 different types of samples issued from 3 different steps of the production chain where quantitative assessment of the Salmonella risk may be useful.
A transmission experiment involving 5-week-old specific-pathogen-free (SPF) piglets, with (MDA+) or without maternally-derived antibodies (MDA−), was carried out to evaluate the impact of passive immunity on the transmission of a swine influenza A virus (swIAV). In each group (MDA+/MDA−), 2 seeders were placed with 4 piglets in direct contact and 5 in indirect contact (3 replicates per group). Serological kinetics (ELISA) and individual viral shedding (RT-PCR) were monitored for 28 days after infection. MDA waning was estimated using a nonlinear mixed-effects model and survival analysis. Differential transmission rates were estimated depending on the piglets’ initial serological status and contact structure (direct contact with pen-mates or indirect airborne contact). The time to MDA waning was 71.3 [52.8–92.1] days on average. The airborne transmission rate was 1.41 [0.64–2.63] per day. The compared shedding pattern between groups showed that MDA+ piglets had mainly a reduced susceptibility to infection compared to MDA− piglets. The resulting reproduction number estimated in MDA+ piglets (5.8 [1.4–18.9]), although 3 times lower than in MDA− piglets (14.8 [6.4–27.1]), was significantly higher than 1. Such an efficient and extended spread of swIAV at the population scale in the presence of MDAs could contribute to swIAV persistence on farms, given the fact that the period when transmission is expected to be impacted by the presence of MDAs can last up to 10 weeks.Electronic supplementary materialThe online version of this article (doi:10.1186/s13567-016-0365-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.