The occipital cortex, normally visual, can be activated by auditory or somatosensory tasks in the blind. This cross-modal compensation appears after early or late onset of blindness with differences in activation between early and late blind. This could support the hypothesis of a reorganization of sensory pathways in the early blind that does not occur in later onset blindness. Using immunohistochemistry of the c-Fos protein following a white noise stimulus and injections of the anterograde tracer dextran-biotin in the inferior colliculus, we studied how the occurrence of blindness influences cross-modal compensation in the mutant anophthalmic mouse strain and in C57BL/6 mice enucleated at birth. We observed, in mutant mice, immunolabeled nuclei in the visual thalamus - the dorsal lateral geniculate nucleus - in the primary visual area (V1) and a few labeled nuclei in the secondary visual area (V2). In enucleated mice, we observed auditory activity mainly in V2 but also sparsely in V1. No labeled cells could be found in the visual thalamus. Tracing studies confirmed the difference between anophthalmic and birth-enucleated mice: whereas the first group showed inferior colliculus projections entering both the dorsal lateral geniculate and the latero-posterior nuclei, in the second, auditory fibers were found only within the latero-posterior thalamic nucleus. None was found in controls with intact eyes. We suggest that the prenatal period of spontaneous retinal activity shapes the differences of the sensory reorganization in mice.
Enrichment of the environment is an effective means of enhancing neuronal development and plasticity but its effect on the cross-modal compensation resulting from sensory deprivation has never been investigated. The present study used c-Fos immunohistochemistry and dextran-biotin neuronal tracing to examine the reorganization of sensory modalities in the brain of anophthalmic mutant mice (ZRDCT/An) raised in either enriched or standard environments. Auditory stimulation was found to elicit strong neuronal activation in thalamic and cortical structures that are normally visual. An important finding was that the latter auditory-evoked cortical activity was considerably enhanced in blind mice raised in the enriched environment. The axonal tracing study demonstrated auditory inputs from the inferior colliculus to the visual thalamus. This animal model will be useful for understanding neuronal mechanisms underlying some cross-modal sensory phenomena observed in blind or deaf humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.