Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10–15% of patients progresses to acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature are presented supporting the hypothesis that a little known yet powerful function of neutrophils—the ability to form neutrophil extracellular traps (NETs)—may contribute to organ damage and mortality in COVID-19. We show lung infiltration of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of COVID-19.
Mammalian p38 mitogen-activated protein kinases (MAPKs) are activated by a wide range of cellular stresses as well as in response to inflammatory cytokines. There are four members of the p38MAPK family (p38alpha, p38beta, p38gamma and p38delta) which are about 60% identical in their amino acid sequence but differ in their expression patterns, substrate specificities and sensitivities to chemical inhibitors such as SB203580. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. The p38MAPK pathway is a key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of this pathway potential targets for the treatment of autoimmune and inflammatory diseases. However, recent studies have shed light on the broad effect of p38MAPK activation in the control of many other aspects of the physiology of the cell, such as control of cell cycle or cytoskeleton remodelling. Here we focus on these emergent roles of p38MAPKs and their implication in different pathologies.
Vascular endothelial growth factor (VEGF) is a potent chemotactic agent for endothelial cells. Yet the signalling pathways that modulate the motogenic effects of VEGF in vascular endothelial cells are still ill defined. In the present study, we found in primary cultures of human umbilical vein endothelial cells (HUVEC) that VEGF increased cell migration and induced a marked reorganization of the microfilament network that was characterized by the formation of stress fibers and the recruitment of vinculin to focal adhesions. VEGF also stimulated the mitogen activated protein (MAP) kinases ERK (extracellular signal-regulated kinase) and p38 (stress activated protein kinase-2), but not SAPK1/JNK (stress activated protein kinase-1/c-Jun NH2-terminal kinase). Activation of p38 resulted in activation of MAP kinase activated protein kinase-2/3 and phosphorylation of the F-actin polymerization modulator, heat shock protein 27 (HSP27). Inhibiting the VEGF-induced activation of ERK with PD098059 did not influence actin organization or cell migration but totally inhibited the VEGF-induced incorporation of thymidine into DNA. Inhibition of p38 activity by the specific inhibitor SB203580 led to an inhibition of HSP27 phosphorylation, actin reorganization and cell migration. The results indicate that the p38 pathway conveys the VEGF signal to microfilaments inducing rearrangements of the actin cytoskeleton that regulate cell migration. By modulating cell migration, p38 may thus be an important regulator of angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.