There has been a surge of interest in Non-Volatile Memory (NVM) in recent years. With many advantages, such as density and power consumption, NVM is carving out a place in the memory hierarchy and may eventually change our view of computer architecture. Many NVMs have emerged, such as Magnetoresistive random access memory (MRAM), Phase Change random access memory (PCM), Resistive random access memory (ReRAM), and Ferroelectric random access memory (FeRAM), each with its own peculiar properties and specific challenges. The scientific community has carried out a substantial amount of work on integrating those technologies in the memory hierarchy. As many companies are announcing the imminent mass production of NVMs, we think that it is time to have a step back and discuss the body of literature related to NVM integration. This article surveys state-of-the-art work on integrating NVM into the memory hierarchy. Specially, we introduce the four types of NVM, namely, MRAM, PCM, ReRAM, and FeRAM, and investigate different ways of integrating them into the memory hierarchy from the horizontal or vertical perspectives. Here, horizontal integration means that the new memory is placed at the same level as an existing one, while vertical integration means that the new memory is interleaved between two existing levels. In addition, we describe challenges and opportunities with each NVM technique.
In this paper, a schedulability test is proposed for tree-shaped transactions with non-immediate tasks. A treeshaped transaction is a group of precedence dependent tasks, partitioned on different processors, which may release several other tasks upon completion. When there are non-immediate tasks, tasks are not necessarily released immediately upon their predecessor's completion. The schedulability test we propose is based on an existing test that does not handle non-immediate tasks directly. Simulation results show that tighter response time upper-bounds can be accessed when effects of non-immediateness are considered. Our schedulability test is motivated by real industrial TDMA systems developed at Thales, and experimental results show it provides less pessimistic schedulability results compared to current methods used by Thales system engineers.
International audienceThis paper proposes a storage system cost model for Infrastructure as a Service (IaaS) Cloud. The proposed cost model takes into account the virtualization environment, the storage system characteristics in addition to energy and QoS related parameters (Service Level Agreement and penalties). We show that those parameters are relevant and allow us to predict an accurate estimation of the overall cost of the IaaS infrastructure. We validate this cost model against real measures and we show less than 10% of error in most cases. Designers and administrators can use this cost model to perform optimization, load balancing, configuration and pricing of the Cloud infrastructure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.