This paper presents an up to date advances in time-domain system identification using fractional models. Both equation-error- and output-error-based models are detailed. In the former models, prior knowledge is generally used to fix differentiation orders; model coefficients are estimated using least squares. The latter models allow simultaneous estimation of model coefficients and differentiation orders using nonlinear programing. As an example, a thermal system is identified using a fractional model and is compared to a rational one.
this paper deals with continuous-time system identification using fractional differentiation models in a noisy output context. The simplified refined instrumental variable for continuous-time systems (srivc) is extended to fractional models. Monte Carlo simulation analysis are used to demonstrate the performance of the proposed optimal instrumental variable scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.