SUMMARY Optimally orchestrating complex behavioral states such as the pursuit and consumption of food is critical for an organism’s survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, while genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH) and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice, to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.
The brain contains an astonishing diversity of neurons, each expressing only one set of ion channels out of the billions of potential channel combinations. Simple organizing principles are required for us to make sense of this abundance of possibilities and wealth of related data. We suggest that energy minimization subject to functional constraints may be one such unifying principle. We compared the energy needed to produce action potentials singly and in trains for a wide range of channel densities and kinetic parameters and examined which combinations of parameters maximized spiking function while minimizing energetic cost. We confirmed these results for sodium channels using a dynamic current clamp in neocortical fast spiking interneurons. We find further evidence supporting this hypothesis in a wide range of other neurons from several species and conclude that the ion channels in these neurons minimize energy expenditure in their normal range of spiking.he mammalian genome contains genes encoding hundreds of types of ion channels, most of which can be produced in multiple splice variants and regulated at multiple phosphorylation sites by numerous intrinsic and extrinsic factors (1-4). Which combination of these ion channels will be expressed by any particular neuron, with any particular computational or behavioral role? Because any given electrical phenotype can be produced by many combinations of ion channels (5-8), on functional grounds alone, this question is severely underconstrained. What other constraints might govern ion channel expression? And can exploring these constraints help us understand how cells or circuits are constructed?Energy consumption may be one such constraint. The brain is one of the most energetically demanding organs in the body (9, 10); the human brain uses more than twice as much glucose per day as the heart (10). Neuronal activity-action potential generation, input integration, and synaptic transmission-accounts for 50-80% of this energy use (11-14). Potential energy is stored in transmembrane ion gradients, which creates a cellular battery whose maintenance accounts for most of the brain's ATP consumption (11,13,15,16). Action potential generation taps into these gradients and expends some of this potential energy, which needs to be actively restored. How can this energy be most efficiently used to generate activity or carry out computation?This question has inspired a body of research on how to encode a signal, or perform a computation, using as few action potentials-and thus as little energy-as possible (17)(18)(19)(20)(21)(22)(23)(24). Which combinations of ion channels will minimize energy cost depends both on the neuron's function, such as its typical firing rate, as well as on the detailed kinetics of the channels (25). Here, we combine biophysical modeling with dynamic-clamp electrophysiology to understand the constraints on the kinetics and density of the ion channels underlying action potential generation. We find that ion channel expression in various species, neural...
Researchers and clinicians are increasingly recognizing that psychological and psychiatric disorders are often developmentally progressive, and that diagnosis often represents a point along that progression that is defined largely by our abilities to detect symptoms. As a result, strategies that guide our searches for the root causes and etiologies of these disorders are beginning to change. This review describes interactions between genetics and experience that influence the development of psychopathologies. Following a discussion of normal brain development that highlights how specific cellular processes may be targeted by genetic or environmental factors, we focus on four disorders whose origins range from genetic (fragile X syndrome) to environmental (fetal alcohol syndrome) or a mixture of both factors (depression and schizophrenia). C.H. Waddington's canalization model (slightly modified) is used as a tool to conceptualize the interactive influences of genetics and experience in the development of these psychopathologies. Although this model was originally proposed to describe the 'canalizing' role of genetics in promoting normative development, it serves here to help visualize, for example, the effects of adverse (stressful) experience in the kindling model of depression, and the multiple etiologies that may underlie the development of schizophrenia. Waddington's model is also useful in understanding the canalizing influence of experience-based therapeutic approaches, which also likely bring about 'organic' changes in the brain. Finally, in light of increased evidence for the role of experience in the development and treatment of psychopathologies, we suggest that future strategies for identifying the underlying causes of these disorders be based less on the mechanisms of action of effective pharmacological treatments, and more on increased knowledge of the brain's cellular mechanisms of plastic change.
The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435–460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590–650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.
Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A-582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A-582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short-term recognition memory, memory consolidation, and sensory gating deficit. A-582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that alpha7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.