Nanoparticles with widely varying physical properties and origins (spherical versus irregular, synthetic versus biological, organic versus inorganic, flexible versus rigid, small versus large) have been previously noted to translocate across the cell plasma membrane. We have employed atomic force microscopy to determine if the physical disruption of lipid membranes, formation of holes and/or thinned regions, is a common mechanism of interaction between these nanoparticles and lipids. It was found that a wide variety of nanoparticles, including a cell penetrating pepide (MSI-78), a protein (TAT), polycationic polymers (PAMAM dendrimers, pentanol-core PAMAM dendrons, polyethyleneimine, and diethylaminoethyl-dextran), and two inorganic particles (Au-NH 2, SiO 2 -NH 2 ), can induce disruption, including the formation of holes, membrane thinning, and/or membrane erosion, in supported lipid bilayers.
The interaction of generation 5 (G5) and 7 (G7) poly(amidoamine) (PAMAM) dendrimers with mica-supported Survanta bilayers is studied with atomic force microscopy (AFM). In these experiments, Survanta forms distinct gel and fluid domains with differing lipid composition. Nanoscale defects are induced by the PAMAM dendrimers. The positively charged dendrimers remove lipid from the fluid domains at a significantly greater rate than for the gel domains. Dendrimer accumulation on lipid edges and terraces preceding lipid removal has been directly imaged. Immediately following lipid removal, the mica surface is clean, indicating that lipid defects are not induced by dendrimers binding to the mica substrate and displacing the lipid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.