Although women appear to be more vulnerable to alcohol-induced pathophysiology than men, the neurobiological basis for sex differences is largely unknown, partially because most studies on alcohol drinking are conducted in male subjects only. The present study examined sex differences in alcohol consumption in two rat strains, Long Evans and Wistar, using multiple behavioral paradigms. The effects of the estrous cycle on alcohol consumption were monitored throughout the study. The results indicated that females drank more alcohol than males when given either continuous or intermittent access to alcohol (vs. water) in their home cages (voluntary drinking). Under operant conditions, no sex or strain differences were found in drinking prior to development of alcohol dependence. However, upon dependence induction by chronic, intermittent alcohol vapor exposure, Wistar rats of both sexes substantially escalated their alcohol intake compared with their nondependent drinking levels, whereas Long Evans rats only exhibited a moderate escalation of drinking. Under these conditions, the estrous cycle had no effect on alcohol drinking in any strain and drinking model. Thus, strain, sex, and drinking conditions interact to modulate nondependent and dependent alcohol drinking. The present results emphasize the importance of including sex and strain as biological variables in exploring individual differences in alcohol drinking and dependence.
Opioid misuse is at historically high levels in the United States, with inhalation (ie, smoking and vaping) being one of the most common routes of consumption. We developed and validated a novel preclinical model of opioid self-administration by inhalation that does not require surgery and reliably produces somatic and motivational signs of dependence. Rats were trained to perform an operant response (nosepoke) to receive 10 s of vaporized sufentanil, a potent opioid, in 2 h daily sessions. Rats readily and concentration-dependently self-administered vaporized sufentanil. Rats exhibited a significant increase in responding for sufentanil when given the preferential μ-opioid receptor inverse agonist naloxone, suggesting the participation of μ-opioid receptors in the reinforcing properties of sufentanil vapor. Serum sufentanil concentrations significantly correlated with the number of sufentanil vapor deliveries. Rats that were given long access (LgA; 12 h/day) but not short access (ShA; 1 h/day) to vaporized sufentanil escalated their drug intake over time and exhibited both naloxone-precipitated somatic signs of opioid withdrawal and spontaneous withdrawal-induced mechanical hypersensitivity. After 6 months of forced drug abstinence, LgA rats returned to pre-escalation baseline levels of responding for sufentanil and mechanical sensitivity. Upon subsequent re-escalation (ie, after the return to extended access to sufentanil vapor), LgA rats again developed naloxone-precipitated somatic signs of withdrawal and spontaneous withdrawal-induced mechanical hypersensitivity. These findings demonstrate that the operant sufentanil vapor self-administration model has both face and construct validity and therefore will be useful for investigating the neurobiological basis of opioid addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.