GPS collars have revolutionized the field of animal ecology, providing detailed information on animal movement and the habitats necessary for species survival. GPS collars also have the potential to cause adverse effects ranging from mild irritation to severe tissue damage, reduced fitness, and death. The impact of GPS collars on the behavior, stress, or activity, however, have rarely been tested on study species prior to release. The objective of our study was to provide a comprehensive assessment of the short-term effects of GPS collars fitted on scimitar-horned oryx (Oryx dammah), an extinct-in-the-wild antelope once widely distributed across Sahelian grasslands in North Africa. We conducted behavioral observations, assessed fecal glucocorticoid metabolites (FGM), and evaluated high-resolution data from tri-axial accelerometers. Using a series of datasets and methodologies, we illustrate clear but short-term effects to animals fitted with GPS collars from two separate manufacturers (Advanced Telemetry Systems-G2110E; Vectronic Aerospace-Vertex Plus). Behavioral observations highlighted a significant increase in the amount of headshaking from pretreatment levels, returning below baseline levels during the post-treatment period (>3 days post-collaring). Similarly, FGM concentrations increased after GPS collars were fitted on animals but returned to pre-collaring levels within 5 days of collaring. Lastly, tri-axial accelerometers, collecting data at eight positions per second, indicated a > 480 percent increase in the amount of hourly headshaking immediately after collaring. This post-collaring increase in headshaking was estimated to decline in magnitude within 4 hours after GPS collar fitting. These effects constitute a handling and/or habituation response (model dependent), with animals showing short-term responses in activity, behavior, and stress that dissipated within several hours to several days of being fitted with GPS collars. Importantly, none of our analyses indicated any long-term effects that would have more pressing animal welfare concerns.
Background Animal movement patterns are the result of both environmental and physiological effects, and the rates of movement and energy expenditure of given movement strategies are influenced by the physical environment an animal inhabits. Greater white-fronted geese in North America winter in ecologically distinct regions and have undergone a large-scale shift in wintering distribution over the past 20 years. White-fronts continue to winter in historical wintering areas in addition to contemporary areas, but the rates of movement among regions, and energetic consequences of those decisions, are unknown. Additionally, linkages between wintering and breeding regions are generally unknown, and may influence within-winter movement rates. Methods We used Global Positioning System and acceleration data from 97 white-fronts during two winters to elucidate movement characteristics, model regional transition probabilities using a multistate model in a Bayesian framework, estimate regional energy expenditure, and determine behavior time-allocation influences on energy expenditure using overall dynamic body acceleration and linear mixed-effects models. We assess the linkages between wintering and breeding regions by evaluating the winter distributions for each breeding region. Results White-fronts exhibited greater daily movement early in the winter period, and decreased movements as winter progressed. Transition probabilities were greatest towards contemporary winter regions and away from historical wintering regions. Energy expenditure was up to 55% greater, and white-fronts spent more time feeding and flying, in contemporary wintering regions compared to historical regions. White-fronts subsequently summered across their entire previously known breeding distribution, indicating substantial mixing of individuals of varying breeding provenance during winter. Conclusions White-fronts revealed extreme plasticity in their wintering strategy, including high immigration probability to contemporary wintering regions, high emigration from historical wintering regions, and high regional fidelity to western regions, but frequent movements among eastern regions. Given that movements of white-fronts trended toward contemporary wintering regions, we anticipate that a wintering distribution shift eastward will continue. Unexpectedly, greater energy expenditure in contemporary wintering regions revealed variable energetic consequences of choice in wintering region and shifting distribution. Because geese spent more time feeding in contemporary regions than historical regions, increased energy expenditure is likely balanced by increased energy acquisition in contemporary wintering areas.
Arctic-nesting geese face energetic challenges during spring migration, including ecological barriers and weather conditions (e.g., precipitation and temperature), which in long-lived species can lead to a trade-off to defer reproduction in favor of greater survival. We used GPS location and acceleration data collected from 35 greater white-fronted geese of the North American midcontinent and Greenland populations at spring migration stopovers, and novel applications of Bayesian dynamic linear models to test daily effects of minimum temperature and precipitation on energy expenditure (i.e., overall dynamic body acceleration, ODBA) and proportion of time spent feeding (PTF), then examined the daily and additive importance of ODBA and PTF on probability of breeding deferral using stochastic antecedent models. We expected distinct responses in behavior and probability of breeding deferral between and within populations due to differences in stopover area availability. Time-varying coefficients of weather conditions were variable between ODBA and PTF, and often did not show consistent patterns among birds, indicating plasticity in how individuals respond to conditions. An increase in antecedent ODBA was associated with a slightly increased probability of deferral in midcontinent geese but not Greenland geese. Probability of deferral decreased with increased PTF in both populations. We did not detect any differentially important time periods. These results suggest either that movements and behavior throughout spring migration do not explain breeding deferral or that ecological linkages between bird decisions during spring and subsequent breeding deferral were different between populations and across migration but occurred at different time scales than those we examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.