Pyrocumulonimbus (pyroCb) wildfires cause devastation in many regions globally. Given that fire‐atmosphere coupling is associated with pyroCbs, future changes in coincident high index values of atmospheric instability and dryness (C‐Haines) and near‐surface fire weather are assessed for southeastern Australia using a regional climate projection ensemble. We show that observed pyroCb events occur predominantly on forested, rugged landscapes during extreme C‐Haines conditions, but over a wide range of surface fire weather conditions. Statistically significant increases in the number of days where both C‐Haines and near‐surface fire weather values are conducive to pyroCb development are projected across southeastern Australia, predominantly for November (spring), and less strongly for December (summer) in 2060‐2079 versus 1990‐2009, with future C‐Haines increases linked to increased 850‐hPa dewpoint depression. The increased future occurrence of conditions conducive to pyroCb development and their extension into spring have implications for mitigating these dangerous wildfires and urbanizing fire‐prone landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.