Ubiquitin-mediated proteolysis utilizes a series of three key enzymes (E1, E2, and E3) to transfer and then covalently modify a substrate with ubiquitin. E2 conjugating enzymes are central proteins in this pathway responsible for the acceptance of a ubiquitin from the E1 enzyme and association with an E3 protein. All E2 enzymes covalently bind ubiquitin through a thiolester linkage between a conserved active-site cysteine on E2 and the C-terminal glycine on ubiquitin. It is not known whether E2 enzymes utilize similar surfaces and residues to coordinate a ubiquitin molecule and how this might contribute to any substrate specificity. In this work, we determined the structure of the human E2 enzyme UbcH8 (UBE2L6) covalently bound to ubiquitin by NMR spectroscopy. A disulfide bond mimicking the short-lived thiolester was formed between the two proteins providing a stable complex. Overall, the structure of UbcH8 does not undergo a significant conformational change upon forming a complex with ubiquitin. Chemical shift perturbation and cross-saturation experiments were used to identify contacts between UbcH8 and ubiquitin and those contacts used as inputs for HADDOCK molecular docking to produce the structure of the UbcH8-ubiquitin complex. An ensemble of 16 structures (root-mean-square deviation of 0.83 A) showed that ubiquitin interacts with the linker region prior to the alpha5 helix as well as residues near the catalytic site. This region corresponds to an area of negative potential on the UbcH8 surface and is considerably different from other E2-ubiquitin interaction sites. Our findings indicate the positioning of ubiquitin on UbcH8 would still allow interaction with E1 and E3 enzymes. Together, the results suggest the UbcH8-ubiquitin complex may provide an additional level of specificity in the ubiquitination pathway.
UbcH7 is a human E2 conjugating enzyme in the ubiquitin-dependent protein degradation pathway. The resonance assignments of UbcH7 will assist in elucidating the structural basis of interactions that occur within ubiquitination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.