While the eukaryotic genome is the same throughout all somatic cells in an organism, there are specific structures and functions that discern one type of cell from another. These differences are due to the cell's unique gene expression patterns that are determined during cellular differentiation. Interestingly, these cell-specific gene expression patterns can be affected by an organism's environment throughout its lifetime leading to phenotypical changes that have the potential of altering risk of some diseases. Both cell-specific gene expression signatures and environment mediated changes in expression patterns can be explained by a complex network of modifications to the DNA, histone proteins and degree of DNA packaging called epigenetic marks. Several areas of research have formed to study these epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA). The original definition of epigenetics incorporates inheritable but reversible phenomena that affect gene expression without altering base pairs. Even though not all of the above listed epigenetic traits have demonstrated heritability, they can all alter gene transcription without modification to the underlying genetic sequence. Because these epigenetic patterns can also be affected by an organism's environment, they serve as an important bridge between life experiences and phenotypes. Epigenetic patterns may change throughout ones lifespan, by an early life experience, environmental exposure or nutritional status. Epigenetic signatures influenced by the environment may determine our appearance, behavior, stress response, disease susceptibility, and even longevity. The interaction between types of epigenetic modifications in response to environmental factors and how environmental cues affect epigenetic patterns will further elucidate how gene transcription can be affectively altered.
In addition to DNA methylation, hydroxymethylation of DNA is recognized as a novel epigenetic mark. Primary liver cancers, i.e., hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), are highly prevalent but epigenetically poorly characterized, so far. In the present study we measured global methylcytosine (mCyt) and hydroxymethylcytosine (hmCyt) in HCC and CC tissues and in peripheral blood mononuclear cell (PBMC) DNA to define mCyt and hmCyt status and, accordingly, the survival rate. Both mCyt and hmCyt were measured by a liquid chromatography/tandem mass spectrometry method in neoplastic and homologous nonneoplastic tissues, i.e., liver and gallbladder, and in PBMCs of 31 HCC and 16 CC patients. Content of mCyt was notably lower in HCC than in CC tissues (3.97% versus 5.26%, respectively; P < 0.0001). Significantly reduced mCyt was also detected in HCC compared to nonneoplastic tissue (3.97% versus 4.82% mCyt, respectively; P < 0.0001), but no such difference was found for CC versus homologous nonneoplastic tissue. Hydroxymethylation was significantly decreased in HCC versus nonneoplastic liver tissue (0.044 versus 0.128, respectively; P < 0.0001) and in CC versus both liver and gallbladder nonneoplastic tissue (0.030 versus 0.124, P 5 0.026, and 0.030 versus 0.123, P 5 0.006, respectively). When the survival rate was evaluated according to mCyt PBMC content by Kaplan-Meier analysis, patients with mCyt 5.59% had a significantly higher life expectancy than those with mCyt <5.59% (P 5 0.034) at a follow-up period up to 48 months. Conclusion: A significant DNA hypomethylation distinguishes HCC from CC, while DNA hypohydroxymethylation characterizes both HCC and CC, and a PBMC DNA mCyt content 5.59% relates to a favorable outcome in primary liver cancers. (HEPATOLOGY 2015;62:496-504) M ethylation and hydroxymethylation of DNA are major epigenetic marks in human DNA consisting of modification of cytosines, respectively, as 5-methylcytosine (mCyt) and 5-hydroxymethylcytosine (hmCyt) in the dynamic processes of methylation and demethylation of DNA involved in the regulatory mechanisms of gene expression. [1][2][3] Methylation of DNA is the main epigenetic feature of mammalian DNA involved in several physiological processes through the transcriptional regulation of gene expression and chromatin conformational configuration 4 but also in pathologic conditions such as cancer disease development and progression. 5 Aberrant DNA methylation is an almost universal finding in cancer, where a global DNA hypomethylation, leading
S-adenosylmethionine (SAM), the unique methyl donor in DNA methylation, has been shown to lower lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokine TNF-α and increase the expression of the anti-inflammatory cytokine IL-10 in macrophages. The aim of this study was to assess whether epigenetic mechanisms mediate the anti-inflammatory effects of SAM. Human monocytic THP1 cells were differentiated into macrophages and treated with 0, 500, or 1,000 μmol/l SAM for 24 h, followed by stimulation with LPS. TNFα and IL-10 expression levels were measured by real-time PCR, cellular concentrations of SAM and S-adenosylhomocysteine (SAH), a metabolite of SAM, were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and DNA methylation was measured with LC-MS/MS and microarrays. Relative to control (0 μmol/l SAM), treatment with 500 μmol/l SAM caused a significant decrease in TNF-α expression (-45%, P < 0.05) and increase in IL-10 expression (+77%, P < 0.05). Treatment with 1,000 μmol/l SAM yielded no significant additional benefits. Relative to control, 500 μmol/l SAM increased cellular SAM concentrations twofold without changes in SAH, and 1,000 μmol/l SAM increased cellular SAM sixfold and SAH fourfold. Global DNA methylation increased 7% with 500 μmol/l SAM compared with control. Following treatment with 500 μmol/l SAM, DNA methylation microarray analysis identified 765 differentially methylated regions associated with 918 genes. Pathway analysis of these genes identified a biological network associated with cardiovascular disease, including a subset of genes that were differentially hypomethylated and whose expression levels were altered by SAM. Our data indicate that SAM modulates the expression of inflammatory genes in association with changes in specific gene promoter DNA methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.