The morphologies, stabilities, and viscosities of high-pressure carbon dioxide-in-water (C/W) foams (emulsions) formed with branched nonionic hydrocarbon surfactants were investigated by in situ optical microscopy and capillary rheology. Over two dozen hydrocarbon surfactants were shown to stabilize C/W foams with Sauter mean bubble diameters as low as 1 to 2 microm. Coalescence of the C/W foam bubbles was rare for bubbles larger than about 0.5 microm over a 60 h time frame, and Ostwald ripening became very slow. By better blocking of the CO(2) and water phases with branched and double-tailed surfactants, the interfacial tension decreases, the surface pressure increases, and the C/W foams become very stable. For branched surfactants with propylene oxide middle groups, the stabilities were markedly lower for air/water foams and decane-water emulsions. The greater stability of the C/W foams to coalescence may be attributed to a smaller capillary pressure, lower drainage rates, and a sufficient surface pressure and thus limiting surface elasticity, plus small film sizes, to hinder spatial and surface density fluctuations that lead to coalescence. Unexpectedly, the foams were stable even when the surfactant favored the CO(2) phase over the water phase, in violation of Bancroft's rule. This unusual behavior is influenced by the low drainage rate, which makes Marangoni stabilization of less consequence and the strong tendency of emerging holes in the lamella to close as a result of surfactant tail flocculation in CO(2). The high distribution coefficient toward CO(2) versus water is of significant practical interest for mobility control in CO(2) sequestration and enhanced oil recovery by foam formation.
W/C emulsions were stabilized using hydrophobic silica particles adsorbed at the interface, resulting in average droplet diameters as low as 7.5 microm. A porous cross-linked shell was formed about a hydrophilic (colloidal and fumed) silica core with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethyoxysilane, to render the particles CO(2)-philic. The stability of emulsions comprising equal weights of CO(2) and water was assessed with visual observations of settling fronts and the degree of emulsion coalescence, and the average drop size was measured by optical microscopy. The effect of CO(2) density on both emulsion stability and droplet size was determined quantitatively. The major destabilizing mechanism of the emulsions was settling, whereas Ostwald ripening and coalescence were not visible at any density, even over 7 days. Flocculation of the settling droplets did not occur, although gelation of the emulsions through particle interactions resulted after longer periods of time. CO(2)-philic particles offer a new route to highly stable W/C emulsions, with particle energies of attachment on the order of 10(6)kT, even at CO(2) densities as low as 0.78 g ml(-1). At these low densities, surfactants rarely stabilize emulsions as the result of poor surfactant tail solvation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.