A semi-Riemannian manifold is said to satisfy R ≥ K (or R ≤ K) if spacelike sectional curvatures are ≥ K and timelike ones are ≤ K (or the reverse). Such spaces are abundant, as warped product constructions show; they include, in particular, big bang Robertson-Walker spaces. By stability, there are many non-warped product examples. We prove the equivalence of this type of curvature bound with local triangle comparisons on the signed lengths of geodesics. Specifically, R ≥ K if and only if locally the signed length of the geodesic between two points on any geodesic triangle is at least that for the corresponding points of its model triangle in the Riemannian, Lorentz or anti-Riemannian plane of curvature K (and the reverse for R ≤ K). The proof is by comparison of solutions of matrix Riccati equations for a modified shape operator that is smoothly defined along reparametrized geodesics (including null geodesics) radiating from a point. Also proved are semi-Riemannian analogues to the three basic Alexandrov triangle lemmas, namely, the realizability, hinge and straightening lemmas. These analogues are intuitively surprising, both in one of the quantities considered, and also in the fact that monotonicity statements persist even though the model space may change. Finally, the algebraic meaning of these curvature bounds is elucidated, for example by relating them to a curvature function on null sections.
An Alexandrov upper bound on curvature for a Riemannian manifold with boundary is proved to be the same as an upper bound on sectional curvature of interior sections and of sections of the boundary which bend away from the interior. As corollaries those same sectional curvatures are related to estimates for convexity and conjugate radii; the Hadamard-Cartan theorem and Yau's isoperimetric inequality for spaces with negative curvature are generalized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.