The recognized gap between research and implementation in avian conservation can be overcome with translational ecology, an intentional approach in which science producers and users from multiple disciplines work collaboratively to co-develop and deliver ecological research that addresses management and conservation issues. Avian conservation naturally lends itself to translational ecology because birds are well studied, typically widespread, often exhibit migratory behaviors transcending geopolitical boundaries, and necessitate coordinated conservation efforts to accommodate resource and habitat needs across the full annual cycle. In this perspective, we highlight several case studies from bird conservation practitioners and the ornithological and conservation social sciences exemplifying the 6 core translational ecology principles introduced in previous studies: collaboration, engagement, commitment, communication, process, and decision-framing. We demonstrate that following translational approaches can lead to improved conservation decision-making and delivery of outcomes via co-development of research and products that are accessible to broader audiences and applicable to specific management decisions (e.g., policy briefs and decision-support tools). We also identify key challenges faced during scientific producer–user engagement, potential tactics for overcoming these challenges, and lessons learned for overcoming the research-implementation gap. Finally, we recommend strategies for building a stronger translational ecology culture to further improve the integration of these principles into avian conservation decisions. By embracing translational ecology, avian conservationists and ornithologists can be well positioned to ensure that future management decisions are scientifically informed and that scientific research is sufficiently relevant to managers. Ultimately, such teamwork can help close the research-implementation gap in the conservation sciences during a time when environmental issues are threatening avian communities and their habitats at exceptional rates and at broadening spatial scales worldwide.
Wetland birds are undergoing severe population declines in North America, with habitat degradation and wetland loss considered two of the primary causes. Due to the cryptic nature of many wetland bird species, the ecological conditions (e.g., matrix composition) that influence bird occupancy, and the relevant spatial scales at which to measure bird responses, remain unclear but may affect inference about wetland use and suitability. We conducted wetland bird surveys at 477 points across northeastern Illinois and northwestern Indiana within the highly urbanized landscape surrounding Chicago. Using remotely sensed land cover data, we built occupancy models for 10 wetland bird species (American Coot Fulica americana, Black-crowned Night-Heron Nycticorax nycticorax, Blue-winged Teal Anas discors, Common Gallinule Gallinula galeata, Least Bittern Ixobrychus exilis, Marsh Wren Cistothorus palustris, Pied-billed Grebe Podilymbus podiceps,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.