Compressed sensing (CS) is a promising emerging domain which outperforms the classical limit of the Shannon sampling theory if the measurement vector can be approximated as the linear combination of few basis vectors extracted from a redundant dictionary matrix. Unfortunately, in realistic scenario, the knowledge of this basis or equivalently of the entire dictionary is often uncertain, i.e. corrupted by a Basis Mismatch (BM) error. The consequence of the BM problem is that the estimation accuracy in terms of Bayesian Mean Square Error (BMSE) of popular sparse-based estimators collapses even if the support is perfectly estimated and in the high Signal to Noise Ratio (SNR) regime. This saturation effect considerably limits the effective viability of these estimation schemes. In the first part of this work, the Bayesian Cramér-Rao Bound (BCRB) is derived for CS model with unstructured BM. We show that the BCRB foresees the saturation effect of the estimation accuracy of standard sparsebased estimators as for instance the OMP, Cosamp or the BP. In addition, we provide an approximation of this BMSE threshold. In the second part and in the context of the structured BM model, a new estimation scheme called Bias-Correction Estimator (BiCE) is proposed and its statistical properties are studied. The BiCE acts as a post-processing estimation layer for any sparsebased estimator and mitigates considerably the BM degradation. Finally, the BiCE (i) is a blind algorithm, i.e., is unaware of the uncorrupted dictionary matrix, (ii) is generic since it can be associated to any sparse-based estimator, (iii) is fast, i.e., the additional computational cost remains low and (iv) has good statistical properties. To illustrate our results and propositions, the BiCE is applied in the challenging context of the compressive sampling of non-bandlimited impulsive signals.
Abstract-Dictionary based sparse estimators are based on the matching of continuous parameters of interest to a discretized sampling grid. Generally, the parameters of interest do not lie on this grid and there exists an estimator bias even at high Signal to Noise Ratio (SNR). This is the off-grid problem. In this work, we propose and study analytical expressions of the Bayesian Mean Square Error (BMSE) of dictionary based biased estimators at high SNR. We also show that this class of estimators is efficient and thus reaches the Bayesian Cramér-Rao Bound (BCRB) at high SNR. The proposed results are illustrated in the context of line spectra analysis and several popular sparse estimators are compared to our closed-form expressions of the BMSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.