Three of the nitrilase isoenzymes of Arabidopsis thaliana (L.) Heynh. are located on chromosome III in tandem and these genes (NIT2/NIT1/NIT3 in the 5'-->3' direction) encode highly similar polypeptides. Copy DNAs encompassing the entire coding sequences for all three nitrilases were expressed in Escherichia coli as fusion proteins containing a C-terminal hexahistidine extension. All three nitrilases were obtained as enzymatically active proteins, and their characteristics were determined, including a detailed comparative analysis of their substrate preferences. All three nitrilases converted indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA), albeit, compared to the most effective substrates found, phenylpropionitrile (PPN), allylcyanide, (phenylthio)acetonitrile and (methylthio)acetonitrile, with low affinity and velocity. The preferred substrates are either naturally occurring substrates, which may originate from glucosinolate breakdown, or they are close relatives of these. Thus, a major function of NIT1, NIT2 and NIT3 is assigned to be the conversion to carboxylic acids of nitriles from glucosinolate turnover or degradation. While all nitrilases exhibit a similar pH optimum around neutral, and NIT1 and NIT3 exhibit a similar temperature optimum around 30 degrees C independent of the substrate analyzed (IAN, PPN), NIT2 showed a remarkably different temperature optimum for IAN (15 degrees C) and PPN (35-40 degrees C). A potential role for NIT2 in breaking seed dormancy in A. thaliana by low temperatures (stratification), however, was ruled out, although NIT2 was the predominantly expressed nitrilase isoform in developing embryos and in germinating seeds, as judged from an analysis of beta-glucuronidase reporter gene expression under the control of the promoters of the four isogenes. It is possible that NIT2 is involved in supplying IAA during seed development rather than during stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.