Abstract.A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63 • N to 52 • S and 72 • W to 124 • E has been achieved within the Raman and polarization lidar network Polly NET . This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. Polly NET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the Polly NET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of Polly NET to support the establishment of a global aerosol climatology that covers the entire troposphere.
Abstract. Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30 % of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR 532 / LR 355 ) around 2, α-related ångström exponents of less than 1, effective radii of 0.3 µm and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.
We present the results of birch pollen characterization using lidar and in situ measurements based on a 11 d pollination period from 5 to 15 May 2016 at the European Aerosol Research Lidar Network (EARLINET) station in Vehmasmäki (Kuopio; 62 • 44 N, 27 • 33 E), Finland. The ground-based multiwavelength Raman polarization lidar Polly XT performed continuous measurements at this rural forest site and has been combined with a Hirst-type volumetric air sampler, which measured the pollen type and concentration at roof level (4 m). The period was separated into two parts due to different atmospheric conditions and detected pollen types. During the first period, high concentrations of birch pollen were measured with a maximum 2 h average pollen concentration of 3700 grains m −3 . Other pollen types represented less than 3 % of the total pollen count. In observed pollen layers, the mean particle depolarization ratio at 532 nm was 10 ± 6 % during the intense birch pollination period. Mean lidar ratios were found to be 45±7 and 55±16 sr at 355 and 532 nm, respectively. During the second period, birch pollen was still dominant, but a significant contribution of spruce pollen was observed as well. Spruce pollen grains are highly nonspherical, leading to a larger mean depolarization ratio of 26 ± 7 % for the birch-spruce pollen mixture. Furthermore, higher lidar ratios were observed during this period with mean values of 60 ± 3 and 62 ± 10 sr at 355 and 532 nm, respectively. The presented study shows the potential of the particle depolarization ratio to track pollen grains in the atmosphere.Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract. The multi-wavelength Raman lidar Polly XT has been regularly operated aboard the research vessel Polarstern on expeditions across the Atlantic Ocean from north to south and vice versa. The lidar measurements of the RV Polarstern cruises PS95 from Bremerhaven, Germany, to Cape Town, Republic of South Africa (November 2015), and PS98 from Punta Arenas, Chile, to Bremerhaven, Germany (April/May 2016), are presented and analysed in detail. The latest set-up of Polly XT allows improved coverage of the marine boundary layer (MBL) due to an additional near-range receiver.Three case studies provide an overview of the aerosol detected over the Atlantic Ocean. In the first case, marine conditions were observed near South Africa on the autumn cruise PS95. Values of optical properties (depolarisation ratios close to zero, lidar ratios of 23 sr at 355 and 532 nm) within the MBL indicate pure marine aerosol. A layer of dried marine aerosol, indicated by an increase of the particle depolarisation ratio to about 10 % at 355 nm (9 % at 532 nm) and thus confirming the non-sphericity of these particles, could be detected on top of the MBL. On the same cruise, an almost pure Saharan dust plume was observed near the Canary Islands, presented in the second case. The third case deals with several layers of Saharan dust partly mixed with biomass-burning smoke measured on PS98 near the Cabo Verde islands. While the MBL was partly mixed with dust in the pure Saharan dust case, an almost marine MBL was observed in the third case.A statistical analysis showed latitudinal differences in the optical properties within the MBL, caused by the downmixing of dust in the tropics and anthropogenic influences in the northern latitudes, whereas the optical properties of the MBL in the Southern Hemisphere correlate with typical marine values. The particle depolarisation ratio of dried marine layers ranged between 4 and 9 % at 532 nm.Night measurements from PS95 and PS98 were used to illustrate the potential of aerosol classification using lidar ratio, particle depolarisation ratio at 355 and 532 nm, and Ångström exponent. Lidar ratio and particle depolarisation ratio have been found to be the main indicator for particle type, whereas the Ångström exponent is rather variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.