The AP-2alpha transcription factor is required for multiple aspects of vertebrate development and mice lacking the AP-2alpha gene (tcfap2a) die at birth from severe defects affecting the head and trunk. Several of the defects associated with the tcfap2a-null mutation affect neural crest cell (NCC) derivatives including the craniofacial skeleton, cranial ganglia, and heart outflow tract. Consequently, there is considerable interest in the role of AP-2alpha in neural crest cell function in development and evolution. In addition, the expression of the AP-2alpha gene is utilized as a marker for premigratory and migratory neural crest cells in many vertebrate species. Here, we have specifically addressed how the presence of AP-2alpha in neural crest cells affects development by creating a conditional (floxed) version of tcfap2a which has subsequently been intercrossed with mice expressing Cre recombinase under the control of Wnt1 cis-regulatory sequences. Neural crest-specific disruption of tcfap2a results in frequent perinatal lethality associated with neural tube closure defects and cleft secondary palate. A small but significant fraction of mutant mice can survive into adulthood, but have retarded craniofacial growth, abnormal middle ear development, and defects in pigmentation. The phenotypes obtained confirm that AP-2alpha directs important aspects of neural crest cell function. At the same time, we did not observe several neurocristopathies affecting the head and heart that might be expected based on the phenotype of the AP-2alpha-null mouse. These results have important implications for the evolution and function of the AP-2 gene family in both the neural crest and the vertebrate embryo.
Malformations concerning the ventral body wall constitute one of the leading categories of human birth defects and are present in about one out of every 2000 live births. Although the occurrence of these defects is relatively common, few detailed experimental studies exist on the development and closure of the ventral body wall in mouse and human. This field is further complicated by the array of theories on the pathogenesis of body wall defects and the likelihood that there is no single cause for these abnormalities. In this review, we summarize what is known concerning the mechanisms of normal ventral body wall closure in humans and mice. We then outline the theories that have been proposed concerning human body wall closure abnormalities and examine the growing number of mouse mutations that impact normal ventral body wall closure. Finally, we speculate how studies in animal models such as mouse and Drosophila are beginning to provide a much-needed mechanistic framework with which to identify and characterize the genes and tissues required for this vital aspect of human embryogenesis.
Most developing structures that express the transcription factor gene AP-2alpha are compromised in AP-2alpha mutant mouse embryos. Since the cardiac neural crest population is one prominent site of AP-2alpha expression, and because the neural crest is known to be required for normal cardiac morphogenesis, we have investigated the involvement of AP-2alpha in cardiac development. All AP-2alpha-deficient embryos examined had malformations of the outflow tract of the developing heart: most had double outlet right ventricle, and a small fraction had persistent truncus arteriosus. To visualize AP-2alpha-expressing cells during the period of cardiac morphogenesis, we established a new mutant germline allele in which an IRES-lacZ sequence was inserted by homologous recombination into the AP-2alpha locus. Positive expression was observed in the cardiac neural crest population during the E9.5-10.5 period (as well as in other known domains of AP-2alpha expression previously noted by in situ hybridization studies), and was mostly extinguished by E11.5 when the cardiac neural crest has migrated into the outflow tract of the developing heart. Importantly, the distribution of AP-2alpha-expressing cardiac neural crest appeared to be identical in normal and mutant embryos. From this analysis, we propose that the AP-2alpha gene functions within the neural crest lineage, that AP-2alpha is not required for neural crest cell migration, and that normal AP-2alpha gene function is required prior to E11.5. AP-2alpha may be involved in an interaction between neural crest and surrounding tissues in the subpharyngeal region, thereby promoting normal outflow tract morphogenesis.
Human birth defects involving the ventral body wall are common, yet little is known about the mechanism of body wall closure in mammals. The AP-2alpha transcription factor knock-out mouse provides an exceptional tool to understand this particular pathology, since it has one of the most severe ventral body wall closure defects, thoracoabdominoschisis. To gain insight into the complex morphological events responsible for body wall closure, we have studied this developmental process in AP-2alpha knock-out mice. Several tissues involved in normal ventral body wall closure are defective in the absence of AP-2alpha, including those associated with the primary body wall, the umbilical ring, and the mesoderm of the secondary body wall. These defects, coupled with the expression pattern of AP-2alpha, suggest that AP-2alpha is involved in multiple developmental mechanisms directing the morphogenesis of the ventral body wall, including cell migration, differentiation, and death. There is a failure of migration and fusion of the body folds at the umbilical ring, as well as in the formation and migration of the abdominal bands and ventral musculature. Furthermore, the mechanism of cell deposition at the umbilical ring is disturbed. Consequently, the mesodermal compartment of the body wall is underdeveloped. We also suggest that AP-2alpha is required for signaling from the surface ectoderm to the underlying mesoderm for proper development and closure of the ventral body wall. These findings provide a fundamental understanding of how AP-2alpha functions in the closure of the ventral body wall, as well as offer insight into related human birth defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.