Making appropriate choices often requires the ability to learn the value of available options from experience. Parkinson’s disease is characterized by a loss of dopamine neurons in the substantia nigra, neurons hypothesized to play a role in reinforcement learning. Although previous studies have shown that Parkinson’s patients are impaired in tasks involving learning from feedback, they have not directly tested the widely held hypothesis that dopamine neuron activity specifically encodes the reward prediction error signal used in reinforcement learning models. To test a key prediction of this hypothesis, we fit choice behavior from a dynamic foraging task with reinforcement learning models and show that treatment with dopaminergic drugs alters choice behavior in a manner consistent with the theory. More specifically, we found that dopaminergic drugs selectively modulate learning from positive outcomes. We observed no effect of dopaminergic drugs on learning from negative outcomes. We also found a novel dopamine-dependent effect on decision making that is not accounted for by reinforcement learning models: perseveration in choice, independent of reward history, increases with Parkinson’s disease and decreases with dopamine therapy.
Decision-making is often viewed as a two-stage process, where subjective values are first assigned to each option and then the option of the highest value is selected. Converging evidence suggests that these subjective values are represented in the striatum and medial prefrontal cortex (MPFC). A separate line of evidence suggests that activation in the same areas represents the values of rewards even when choice is not required, as in classical conditioning tasks. However, it is unclear whether the same neural mechanism is engaged in both cases. To address this question we measured brain activation with functional magnetic resonance imaging while human subjects passively viewed individual consumer goods. We then sampled activation from predefined regions of interest and used it to predict subsequent choices between the same items made outside of the scanner. Our results show that activation in the striatum and MPFC in the absence of choice predicts subsequent choices, suggesting that these brain areas represent value in a similar manner whether or not choice is required.
Dishonesty is an integral part of our social world, influencing domains ranging from finance and politics to personal relationships. Anecdotally, digressions from a moral code are often described as a series of small breaches that grow over time. Here, we provide empirical evidence for a gradual escalation of self-serving dishonesty and reveal a neural mechanism supporting it. Behaviorally, we show that the extent to which participants engage in self-serving dishonesty increases with repetition. Using fMRI we show that signal reduction in the amygdala is sensitive to the history of dishonest behavior, consistent with adaptation. Critically, the extent of amygdala BOLD reduction to dishonesty on a present decision relative to the last, predicts the magnitude of escalation of self-serving dishonesty on the next decision. The findings uncover a biological mechanism that supports a “slippery slope”: what begins as small acts of dishonesty can escalate into larger instances.
It is well known that hormones affect both brain and behavior, but less is known about the extent to which hormones affect economic decision-making. Numerous studies demonstrate gender differences in attitudes to risk and loss in financial decision-making, often finding that women are more loss and risk averse than men. It is unclear what drives these effects and whether cyclically varying hormonal differences between men and women contribute to differences in economic preferences. We focus here on how economic rationality and preferences change as a function of menstrual cycle phase in women. We tested adherence to the Generalized Axiom of Revealed Preference (GARP), the standard test of economic rationality. If choices satisfy GARP then there exists a well-behaved utility function that the subject’s decisions maximize. We also examined whether risk attitudes and loss aversion change as a function of cycle phase. We found that, despite large fluctuations in hormone levels, women are as technically rational in their choice behavior as their male counterparts at all phases of the menstrual cycle. However, women are more likely to choose risky options that can lead to potential losses while ovulating; during ovulation women are less loss averse than men and therefore more economically rational than men in this regard. These findings may have market-level implications: ovulating women more effectively maximize expected value than do other groups.
102 Cornell L. Rev. 1431 (2017)People are frequently exposed to competing evidence about climate change. We examined how new information alters people’s beliefs. We find that people who are not sure that man-made climate change is occurring, and who do not favor an international agreement to reduce greenhouse gas emissions, show a form of asymmetrical updating: They change their beliefs in response to unexpected good news (suggesting that average temperature rise is likely to be less than previously thought) and fail to change their beliefs in response to unexpected bad news (suggesting that average temperature rise is likely to be greater than previously thought). By contrast, people who strongly believe that manmade climate change is occurring, and who favor an international agreement, show the opposite asymmetry: They change their beliefs far more in response to unexpected bad news (suggesting that average temperature rise is likely to be greater than previously thought) than in response to unexpected good news (suggesting that average temperature rise is likely to be smaller than previously thought). The results suggest that exposure to varied scientific evidence about climate change may increase polarization within a population due to asymmetrical updating. We explore the implications of our findings for how people will update their beliefs upon receiving new evidence about climate change, and also for other beliefs relevant to politics and law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.