Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many OPEN ACCESSRemote Sens. 2013, 5 6718 important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available-expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.
[1] The Suomi National Polar-Orbiting Partnership (NPP) launched on 28 October 2011 hosts the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor. The VIIRS sensor includes a day-night band (DNB) that covers almost 7 orders of magnitude in its dynamic range from full sunlit scenes to lunar-illuminated clouds. The DNB is panchromatic and covers the wavelengths from 500 nm to 900 nm. Since launch, extensive effort has gone into its characterization. We have shown that the DNB is performing extremely well, meeting most of its specifications with some minor exceedances. The DNB characteristics evaluated include the following: sampling and resolution across the swath, geolocation uncertainty, radiometric sensitivity, radiometric uncertainty, and stray light. The only significant deviation from specification involves the stray light specification. On-orbit, the characterization shows that the DNB suffers stray light level on the order of 100% L min or 3 × 10 À9 W•cm À2 •sr À1 . After algorithmic correction, the residual radiometric error was reduced to approximately 4.5 × 10 À10 W•cm À2 •sr À1 .
The Visible/Infrared Imager Radiometer Suite (VIIRS), built by Raytheon Santa Barbara Remote Sensing (SBRS) will be one of the primary earth-observing remote-sensing instruments on the National Polar-Orbiting Operational Environmental Satellite System (NPOESS). It will also be installed on the NPOESS Preparatory Project (NPP). These satellite systems fly in near-circular, sun-synchronous low-earth orbits at altitudes of approximately 830 km. VIIRS has 15 bands designed to measure reflectance with wavelengths between 412 nm and 2250 nm, and an additional 7 bands measuring primarily emissive radiance between 3700nm and 11450 nm.The calibration source for the reflective bands is a solar diffuser (SD) that is illuminated once per orbit as the satellite passes from the dark side to the light side of the earth near the poles. Sunlight enters VIIRS through an opening in the front of the instrument. An attenuation screen covers the opening, but other than this there are no other optical elements between the SD and the sun. The BRDF of the SD and the transmittance of the attenuation screen is measured preflight, and so with knowledge of the angles of incidence, the radiance of the sun can be computed and is used as a reference to produce calibrated reflectances and radiances. Unfortunately, the opening also allows a significant amount of reflected earthshine to illuminate part of the SD, and this component introduces radiometric error to the calibration process, referred to as earthshine contamination (ESC). The VIIRS radiometric error budget allocated a 0.3% error based on modeling of the ESC done by SBRS during the design phase. This model assumes that the earth has Lambertian BRDF with a maximum top-of-atmosphere albedo of 1.The Moderate Resolution Imaging Spectroradiometer (MODIS) has an SD with a design similar to VIIRS, and in 2003 the MODIS Science Team reported to Northrop Grumman Space Technology (NGST), the prime contractor for NPOESS, their suspicion that ESC was causing higher than expected radiometric error, and asked whether VIIRS might have a similar problem. The NPOESS Models and Simulation (M&S) team considered whether the Lambertian BRDF assumption would cause an underestimating of the ESC error. Particularly, snow, ice and water show very large BRDFs for geometries for forward scattered, near-grazing angles of incidence, and in common parlance this is called glare. The observed earth geometry during the period where the SD is illuminated by the sun has just such geometries that produce strongly forward scattering glare. In addition the SD acquisition occurs in the polar regions, where snow, ice and water are most prevalent. Using models in their Environmental Products Verification and Remote Sensing Testbed (EVEREST) ‡ , the M&S team produced a model that meticulously traced the light rays from the attenuation screen to each detector and combined this with a model of the satellite orbit, with solar geometry and radiative transfer models that include the effect of the BRDF of various surfaces. This model...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.