Ultraviolet radiation-induced DNA damage frequencies were measured in DNA dosimeters and natural plankton communities during the austral spring at Palmer Station, Antarctica, during the 1999-2000 field season. We found that the fluence of solar ultraviolet-B radiation (UV-B) at the earth's surface correlated with stratospheric ozone concentrations, with significant ozone depletion observed because of "ozone hole" conditions. To verify the interdependence of ozone depletion and DNA damage in natural microbial communities, seawater was collected daily or weekly from Arthur Harbor at Palmer Station, Antarctica, throughout "ozone season," exposed to ambient sunlight between 0600 and 1800 h and fractionated using membrane filtration to separate phytoplankton and bacterioplankton populations. DNA from these fractions was isolated and DNA damage measured using radioimmunoassay. Under low-ozone conditions cyclobutane dimer concentrations in bacterioplankton and phytoplankton communities were maximal. DNA damage measured in dosimeters correlated closely with ozone concentrations and UV-B fluence. Our studies offer further support to the theory that stratospheric deozonation is detrimental to marine planktonic organisms in the Southern Ocean.
It has previously been shown that chronic exposure to low fluences of ultraviolet B radiation reduced DNA repair capacity in mouse skin. In this study we now extend this to examine the concentration dependence and tissue dependence of this phenomenon. We found that (6-4) photoproducts were repaired considerably faster than cyclobutane dimers and that the kinetics for photoproduct removal were comparable in the dermis and epidermis. Chronic ultraviolet B irradiation significantly reduced the initial rate and extent of DNA repair. After low daily doses of ultraviolet B (6-4) photoproduct repair was most affected and after high daily doses the repair of both cyclobutane and (6-4) dimers was reduced. Whereas cyclobutane dimer repair was most affected in the dermis, reduced (6-4) photoproduct repair was observed in both tissues. The deleterious effects of chronic ultraviolet exposure were sustained for a considerable time after the chronic treatment ended.
Fluorescent sunlamps are commonly employed as convenient sources in photobiology experiments. The ability of Kodacel to filter photobiologically irrelevant UVC wavelengths has been described. Yet there still remains a major unaddressed issue--the over representation of UVB in the output. The shortest terrestrial solar wavelengths reaching the surface are approximately 295 nm with the 295-320 nm range comprising approximately 4% of the solar UV irradiance. In Kodacel-filtered sunlamps, 47% of the UV output falls in this range. Consequently, in studies designed to understand skin photobiology after solar exposure, the use of these unfiltered sunlamps may result in misleading, or even incorrect conclusions. To demonstrate the importance of using an accurate representation of the UV portion of sunlight, the ability of different ultraviolet radiation (UVR) sources to induce the expression of a reporter gene was assayed. Unfiltered fluorescent sunlamps (FS lamps) induce optimal chloramphenicol acetyltransferase (CAT) activity at apparently low doses (10-20 J/cm2). Filtering the FS lamps with Kodacel raised the delivered dose for optimal CAT activity to 50-60 mJ/cm2. With the more solar-like UVA-340 lamps somewhat lower levels of CAT activities were induced even though the apparent delivered doses were significantly greater than for either the FS or Kodacel-filtered sunlamp (KFS lamps). When DNA from parallel-treated cells was analyzed for photoproduct formation by a radioimmuneassay, it was shown that the induction of CAT activity correlated with the level of induced photoproduct formation regardless of the source employed.
Ultraviolet radiation–induced DNA damage frequencies were measured in DNA dosimeters and natural plankton communities during the austral spring at Palmer Station, Antarctica, during the 1999–2000 field season. We found that the fluence of solar ultraviolet‐B radiation (UV‐B) at the earth's surface correlated with stratospheric ozone concentrations, with significant ozone depletion observed because of “ozone hole” conditions. To verify the interdependence of ozone depletion and DNA damage in natural microbial communities, seawater was collected daily or weekly from Arthur Harbor at Palmer Station, Antarctica, throughout “ozone season,” exposed to ambient sunlight between 0600 and 1800 h and fractionated using membrane filtration to separate phytoplankton and bacterioplankton populations. DNA from these fractions was isolated and DNA damage measured using radioimmunoassay. Under low‐ozone conditions cyclobutane dimer concentrations in bacterioplankton and phytoplankton communities were maximal. DNA damage measured in dosimeters correlated closely with ozone concentrations and UV‐B fluence. Our studies offer further support to the theory that stratospheric deozonation is detrimental to marine planktonic organisms in the Southern Ocean.
Fluorescent sunlamps are commonly employed as convenient sources in photobiology experiments. The ability of Kodacel to filter photobiologically irrelevant UVC wavelengths has been described. Yet there still remains a major unaddressed issue--the over representation of UVB in the output. The shortest terrestrial solar wavelengths reaching the surface are approximately 295 nm with the 295-320 nm range comprising approximately 4% of the solar UV irradiance. In Kodacel-filtered sunlamps, 47% of the UV output falls in this range. Consequently, in studies designed to understand skin photobiology after solar exposure, the use of these unfiltered sunlamps may result in misleading, or even incorrect conclusions. To demonstrate the importance of using an accurate representation of the UV portion of sunlight, the ability of different ultraviolet radiation (UVR) sources to induce the expression of a reporter gene was assayed. Unfiltered fluorescent sunlamps (FS lamps) induce optimal chloramphenicol acetyltransferase (CAT) activity at apparently low doses (10-20 J/cm2). Filtering the FS lamps with Kodacel raised the delivered dose for optimal CAT activity to 50-60 mJ/cm2. With the more solar-like UVA-340 lamps somewhat lower levels of CAT activities were induced even though the apparent delivered doses were significantly greater than for either the FS or Kodacel-filtered sunlamp (KFS lamps). When DNA from parallel-treated cells was analyzed for photoproduct formation by a radioimmuneassay, it was shown that the induction of CAT activity correlated with the level of induced photoproduct formation regardless of the source employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.