BackgroundAdiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor) in bovine ovary and its role on ovarian cells and embryo, remain however to be determined.MethodsHere, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL) on proliferation of granulosa cells (GC) measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development.ResultsWe show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum) and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8) M-induced GC proliferation (P < 0.01) but not basal or insulin 10(-8) M-induced proliferation. Additionally, adiponectin decreased insulin 10(-8) M-induced, but not basal or IGF-1 10(-8) M-induced secretions of progesterone (P < 0.01) and estradiol (P < 0.05) by GC. This decrease in insulin-induced steroidogenesis was associated with a decrease in ERK1/2 MAPK phosphorylation in GC pre-treated with adiponectin. Finally, addition of adiponectin during in vitro maturation affected neither the percentage of oocyte in metaphase-II nor 48-h cleavage and blastocyst day 8 rates.ConclusionsIn bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.
The mechanisms controlling the interaction between energy balance and reproduction are the subject of intensive investigations. The integrated control of these systems is probably a multifaceted phenomenon involving an array of signals governing energy homeostasis, metabolism, and fertility. Two fuel sensors, PPARs, a superfamily of nuclear receptors and the kinase AMPK, integrate energy control and lipid and glucose homeostasis. Adiponectin, one of the adipocyte-derived factors mediate its actions through the AMPK or PPARs pathway. These three molecules are expressed in the ovary, raising questions about the biological actions of fuel sensors in fertility and the use of these molecules to treat fertility problems. This review will highlight the expression and putative role of PPARs, AMPK, and adiponectin in the ovary, particularly during folliculogenesis, steroidogenesis, and oocyte maturation.
Ghrelin and one of its functional receptors, GHS-R1a (Growth Hormone Secretagogue Receptor 1a), were firstly studied about 15 years. Ghrelin is a multifunctional peptide hormone that affects several biological functions including food intake, glucose release, cell proliferation… Ghrelin and GHS-R1a are expressed in key cells of both male and female reproductive organs in several species including fishes, birds, and mammals suggesting a well-conserved signal through the evolution and a role in the control of fertility. Ghrelin could be a component of the complex series of nutrient sensors such as adipokines, and nuclear receptors, which regulate reproduction in function of the energy stores. The objective of this paper was to report the available information about the ghrelin system and its role at the level of the hypothalamic-pituitary-gonadal axis in both sexes.
Hypothalamic AMP-activated kinase (AMPK) is a key regulator of food intake in mammals. Its role in reproduction at the central level and, more precisely, in gonadotrophin-releasing hormone (GnRH) release has never been investigated. We showed that each subunit of AMPK is present in immortalised GnRH neurones (GT1-7 cells). Treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) and metformin, two activators of AMPK, increased dose-dependent and time-dependent phosphorylation of AMPKalpha atThr172 in GT1-7 cells. Phosphorylation of acetyl-coenzyme A carboxylase at ser79 also increased. Treatment with AICAR (5 mM) or metformin (5 mM) for 4 h inhibited GnRH release in the presence or absence of GnRH (10(-8) M). Specific AMPK inhibitor compound C completely eliminated the effects of AICAR or metformin on GnRH release. Finally, we determined the central effects of AICAR in vivo on food intake and oestrous cyclicity. Ten-week-old female rats received a 50 microg AICAR or a saline i.c.v. injection. We detected increased AMPK and acetyl-CoA carboxylase phosphorylation, specifically in the hypothalamus, 30 min after AICAR injection. Food intake was significantly higher (P < 0.05) in animals treated with AICAR than in animals injected with saline, 24 h after injection. This effect was abolished after 1 week. Moreover, during the 4 weeks following injection, the interval between two oestrous stages was significantly lower in the AICAR group than in the saline group. Our findings suggest that AMPK activation may act directly at the hypothalamic level to affect fertility by modulating GnRH release and oestrous cyclicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.