TAZ (WWTR1) and YAP are transcriptional coactivators and oncoproteins inhibited by the Hippo pathway. Herein we evaluate 159 sarcomas representing the most prevalent sarcoma types by immunohistochemistry for expression and activation (nuclear localization) of TAZ and YAP. We show that 50% of sarcomas demonstrate activation of YAP while 66% of sarcomas demonstrate activated TAZ. Differential activation of TAZ and YAP are identified in various sarcoma types. At an RNA level, expression of WWTR1 or YAP1 predicts overall survival in undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. Immunohistochemistry demonstrates that TAZ and YAP expression and activation are positively correlated with grade in the well-differentiated liposarcoma to dedifferentiated liposarcoma tumor progression sequence as well as conventional chondrosarcomas. TAZ and YAP are constitutively activated oncoproteins in sarcoma cell lines. Knock-down of TAZ and YAP demonstrate differential activity for the two proteins. Verteporfin decreases colony formation in soft agar as well as CTGF expression in sarcoma cell lines harboring activated TAZ and YAP.
The increasing use of antipsychotics (APs) to treat pediatric psychiatric conditions has led to concerns over the long-term tolerability of these drugs. While the risk of cardiometabolic abnormalities has received most of the attention, preclinical and clinical studies provide preliminary evidence that APs can adversely impact bone metabolism. This would be most concerning in children and adolescents as suboptimal bone accrual during development may lead to increased fracture risk later in life. However, the potential mechanisms of action through which APs may impact bone turnover and, consequently, bone mineral content are not clear. Emerging data suggest that the skeletal effects of APs are complex, with APs directly and indirectly impacting bone cells through modulation of multiple signaling pathways, including those involving dopamine D 2 , serotonin, adrenergic, and prolactin receptors, as well as by affecting gonadotropins. Determining the action of APs on skeletal development is further complicated by polypharmacy. In children and adolescents, APs are frequently coprescribed with psychostimulants and selective serotonin reuptake inhibitors, which have also been linked to changes in bone metabolism. This review discusses the mechanisms by which APs may influence bone metabolism. Also covered are preclinical and pediatric findings concerning the impact of APs on bone turnover. However, the dearth of clinical information despite the potential public health significance of this issue underscores the need for further studies. The review ends with a call for clinicians to be vigilant about promoting optimal overall health in chronically ill youth with psychopathology, particularly when pharmacotherapy is unavoidable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.