The structure of Escherichia coli leucine-responsive regulatory protein (Lrp) cocrystallized with a short duplex oligodeoxynucleotide reveals a novel quaternary assembly in which the protein octamer forms an open, linear array of four dimers. In contrast, structures of the Lrp homologs LrpA, LrpC and AsnC crystallized in the absence of DNA show that these proteins instead form highly symmetrical octamers in which the four dimers form a closed ring. Although the DNA is disordered within the Lrp crystal, comparative analyses suggest that the observed differences in quaternary state may arise from DNA interactions during crystallization. Interconversion of these conformations, possibly in response to DNA or leucine binding, provides an underlying mechanism to alter the relative spatial orientation of the DNA-binding domains. Breaking of the closed octamer symmetry may be a common essential step in the formation of active DNA complexes by all members of the Lrp/AsnC family of transcriptional regulatory proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.