Antibody (Ab) fragments have great clinical potential as cancer therapeutics and diagnostics. Their small size allows for fast clearance from blood, low immunoreactivity, better tumor penetration, and simpler engineering and production. The smallest fragment derived from a full-length IgG that retains binding to its antigen, the single-chain variable fragment (scF), is engineered by fusing the variable light and variable heavy domains with a peptide linker. Along with switching the domain orientation, altering the length and amino acid sequence of the linker can significantly affect scF binding, stability, quaternary structure, and other biophysical properties. Comprehensive studies of these attributes in a single scaffold have not been reported, making design and optimization of Ab fragments challenging. Here, we constructed libraries of 3E8, an Ab specific to tumor-associated glycoprotein 72 (TAG-72), a mucinous glycoprotein overexpressed in 80% of adenocarcinomas. We cloned, expressed, and characterized scFs, diabodies, and higher-order multimer constructs with varying linker compositions, linker lengths, and domain orientations. These constructs dramatically differed in their oligomeric states and stabilities, not only because of linker and orientation but also related to the purification method. For example, protein L-purified constructs tended to have broader distributions and higher oligomeric states than has been reported previously. From this library, we selected an optimal construct, 3E8.GS, for biodistribution and pharmacokinetic studies and xenograft mouse PET imaging. These studies revealed significant tumor targeting of 3E8.GS with a tumor-to-background ratio of 29:1. These analyses validated 3E8.GS as a fast, accurate, and specific tumor-imaging agent.
Oct-2 is a transcription factor that binds specifically to octamer DNA motifs in the promoters of immunoglobulin and interleukin-2 genes. All tumor cell lines from the B-cell lineage and a few from the T-cell lineage express Oct-2. To address the role of Oct-2 in the T-cell lineage, we studied the expression of Oct-2 mRNA and protein in nontransformed human and mouse T cells. Oct-2 was found in CD4+ and CD8+ T cells prepared from human peripheral blood and in mouse lymph node T cells. In a T-cell clone specific for pigeon cytochrome c in the context of I-Ek, Oct-2 was induced by antigen stimulation, with the increase in Oct-2 protein seen first at 3 h after activation and continuing for at least 24 h. Oct-2 mRNA induction during antigen-driven T-cell activation was blocked by cyclosporin A, as well as by protein synthesis inhibitors. These results suggest that Oct-2 participates in transcriptional regulation during T-cell activation. The relatively delayed kinetics of Oct-2 induction suggests that Oct-2 mediates the changes in gene expression which occur many hours or days following antigen stimulation of T lymphocytes.
A simple and rapid non-radioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Mono- and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (mono- and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of mono iodinated cRGDyK, i.e., >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK: sodium iodide: sodium hypochlorite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.