Older adults typically perform worse on spatial navigation tasks, although whether this is due to degradation of memory or an impairment in using specific strategies has yet to be determined. An issue with some past studies is that older adults are tested on desktop-based virtual reality: a technology many report lacking familiarity with. Even when controlling for familiarity, these paradigms reduce the information-rich, three-dimensional experience of navigating to a simple two-dimensional task that utilizes a mouse and keyboard (or joystick) as means for ambulation. Here, we utilize a wireless head-mounted display and free ambulation to create a fully immersive virtual Morris water maze in which we compare the navigation of older and younger adults. Older and younger adults learned the locations of hidden targets from same and different start points. Across different conditions tested, older adults remembered target locations less precisely compared to younger adults. Importantly, however, they performed comparably from the same viewpoint as a switched viewpoint, suggesting that they could generalize their memory for the location of a hidden target given a new point of view. When we implicitly moved one of the distal cues to determine whether older adults used an allocentric (multiple landmarks) or beaconing (single landmark) strategy to remember the hidden target, both older and younger adults showed comparable degrees of reliance on allocentric and beacon cues. These findings support the hypothesis that while older adults have less precise spatial memories, they maintain the ability to utilize various strategies when navigating.
Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional magnetic resonance imaging (fMRI) of the medial temporal lobe. Older adults showed, on average, less distinct neural patterns between spatial environments and more variable neural patterns within a single environment. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.