Infection by Grapevine fanleaf nepovirus (GFLV), a bipartite RNA virus of positive polarity belonging to the Comoviridae family, causes extensive cytopathic modifications of the host endomembrane system that eventually culminate in the formation of a perinuclear "viral compartment." We identified by immunoconfocal microscopy this compartment as the site of virus replication since it contained the RNA1-encoded proteins necessary for replication, newly synthesized viral RNA, and double-stranded replicative forms. In addition, by using transgenic T-BY2 protoplasts expressing green fluorescent protein in the endoplasmic reticulum (ER) or in the Golgi apparatus (GA), we could directly show that GFLV replication induced a depletion of the cortical ER, together with a condensation and redistribution of ER-derived membranes, to generate the viral compartment. Brefeldin A, a drug known to inhibit vesicle trafficking between the GA and the ER, was found to inhibit GFLV replication. Cerulenin, a drug inhibiting de novo synthesis of phospholipids, also inhibited GFLV replication. These observations imply that GFLV replication depends both on ER-derived membrane recruitment and on de novo lipid synthesis. In contrast to proteins involved in viral replication, the 2B movement protein and, to a lesser extent, the 2C coat protein were not confined to the viral compartment but were transported toward the cell periphery, a finding consistent with their role in cell-to-cell movement of virus particles.
The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a~30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH 4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser 505 phosphorylation at the structurally exposed Ser-X-Glu 507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser 505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7 À/À mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.
The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR 66 ↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancerprotective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients' data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.