Real-time single- and multiple-axis vibrotactile feedback of trunk motion has been shown to significantly decrease mean trunk tilt and decrease time spent outside a no vibrotactile feedback zone (dead zone) in older adults within a laboratory setting. This study aimed to determine if these improvements can translate into everyday use, during which other tasks may simultaneously demand attention. A dual-task paradigm was used in which 10 community-dwelling older adults were asked to perform standing trials in the presence of a secondary task (verbal or push-button), vibrotactile feedback, or both (dual-task). Results show that subjects significantly increased the percentage of time inside the dead zone when feedback was provided compared to when it was not during both verbal (+13.6%) and push-button (+10.1%) secondary tasks. Providing feedback also decreased RMS of trunk tilt during both secondary tasks (verbal: -0.1298; push-button: -0.1388). However, response times for secondary tasks increased (verbal: +119 ms; push-button: +110 ms) when feedback was provided. These results suggest that while vibrotactile feedback does increase attentional load in older adults, it can still be used effectively to improve postural metrics in high cognitive load situations.
Control of standing posture requires fusion of multiple inputs including visual, vestibular, somatosensory, and other sensors, each having distinct dynamics. The semicircular canals, for example, have a unique high-pass filter response to angular velocity, quickly sensing a step change in head rotational velocity followed by a decay. To stabilize gaze direction despite this decay, the central nervous system supplies a neural "velocity storage" integrator, a filter that extends the angular velocity signal. Similar filtering might contribute temporal dynamics to posture control, as suggested by some state estimation models. However, such filtering has not been tested explicitly. We propose that posture control indeed entails a neural integrator for sensory inputs, and we test its behavior with classic sensory perturbations: a rotating optokinetic stimulus to the visual system and a galvanic vestibular stimulus to the vestibular system. A simple model illustrates how these two inputs and body tilt sensors might produce a postural tilt response in the frontal plane. The model integrates these signals through a direct weighted sum of inputs, with or without an indirect pathway containing a neural integrator. Comparison with experimental data from healthy adult subjects ( = 16) reveals that the direct weighting model alone is insufficient to explain resulting postural transients, as measured by lateral tilt of the trunk. In contrast, the neural integrator, shared by sensory signals, produces the dynamics of both optokinetic and galvanic vestibular responses. These results suggest that posture control may involve both direct and indirect pathways, which filter sensory signals and make them compatible for sensory fusion. Control of standing posture requires fusion of multiple inputs including visual, vestibular, somatosensory, and other sensors, each having distinct dynamics. We propose that postural control also entails a shared neural integrator. To test this theory, we perturbed standing subjects with classic sensory stimuli (optokinetic and galvanic vestibular stimulation) and found that our proposed shared filter reproduces the dynamics of subjects' postural responses.
The Vestibulo-Ocular Reflex (VOR) works to stabilize gaze during unexpected head movements. However, even subjects who lack a VOR (e.g., vestibulopathic patients) can achieve gaze stability during planned head movements by using pre-programmed eye movements (PPEM). The extent to which PPEM are used by healthy intact subjects and how they interact with the VOR is still unclear. We propose a model of gaze stabilization which makes several claims: (1) the VOR provides ocular stability during unexpected (i.e., passive) head movements; (2) PPEM are used by both healthy and vestibulopathic subjects during planned (i.e., active) head movements; and (3) when a passive perturbation interrupts an active head movement in intact animals (i.e., combined passive and active head movement) the VOR works with PPEM to provide compensation. First, we show how our model can reconcile some seemingly conflicting findings in earlier literature. We then test the above-mentioned predictions against data we collected from both healthy and vestibular-lesioned guinea pigs. We found that (1) vestibular-lesioned animals showed a dramatic decrease in compensatory eye movements during passive head movements, (2) both populations showed improved ocular compensation during active vs. passive head movements, and (3) during combined active and passive head movements, eye movements compensated for both the active and passive component of head velocity. These results support our hypothesis that while the VOR provides compensation during passive head movements, PPEM are used by both intact and lesioned subjects during active movements and further, that PPEM work together with the VOR to achieve gaze stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.