Travel-time tomography for the velocity structure of a medium is a highly nonlinear and nonunique inverse problem. Monte Carlo methods are becoming increasingly common choices to provide probabilistic solutions to tomographic problems but those methods are computationally expensive. Neural networks can often be used to solve highly nonlinear problems at a much lower computational cost when multiple inversions are needed from similar data types. We present the first method to perform fully nonlinear, rapid and probabilistic Bayesian inversion of travel-time data for 2D velocity maps using a mixture density network. We compare multiple methods to estimate probability density functions that represent the tomographic solution, using different sets of prior information and different training methodologies. We demonstrate the importance of prior information in such high-dimensional inverse problems due to the curse of dimensionality: unrealistically informative prior probability distributions may result in better estimates of the mean velocity structure; however, the uncertainties represented in the posterior probability density functions then contain less information than is obtained when using a less informative prior. This is illustrated by the emergence of uncertainty loops in posterior standard deviation maps when inverting travel-time data using a less informative prior, which are not observed when using networks trained on prior information that includes (unrealistic) a priori smoothness constraints in the velocity models. We show that after an expensive program of network training, repeated high-dimensional, probabilistic tomography is possible on timescales of the order of a second on a standard desktop computer.
With the advent of large and dense seismic arrays, novel, cheap, and fast imaging and inversion methods are needed to exploit the information captured by stations in close proximity to each other and produce results in near real time. We have developed a sequence of fast seismic acquisition for dispersion curve extraction and inversion for 3D seismic models, based on wavefield gradiometry, wave equation inversion, and machine-learning technology. The seismic array method that we use is Helmholtz wave equation inversion using measured wavefield gradients, and the dispersion curve inversions are based on a mixture of density neural networks (NNs). For our approach, we assume that a single surface wave mode dominates the data. We derive a nonlinear relationship among the unknown true seismic wave velocities, the measured seismic wave velocities, the interstation spacing, and the noise level in the signal. First with synthetic and then with the field data, we find that this relationship can be solved for unknown true seismic wave velocities using fixed point iterations. To estimate the noise level in the data, we need to assume that the effect of noise varies weakly with the frequency and we need to be able to calibrate the retrieved average dispersion curves with an alternate method (e.g., frequency wavenumber analysis). The method is otherwise self-contained and produces phase velocity estimates with tens of minutes of noise recordings. We use NNs, specifically a mixture density network, to approximate the nonlinear mapping between dispersion curves and their underlying 1D velocity profiles. The networks turn the retrieved dispersion model into a 3D seismic velocity model in a matter of seconds. This opens the prospect of near-real-time near-surface seismic velocity estimation using dense (and potentially rolling) arrays and only ambient seismic energy.
Travel time tomography for the velocity structure of a medium is a highly non-linear and non-unique inverse problem. Monte Carlo methods are becoming increasingly common choices to provide probabilistic solutions to tomographic problems but those methods are computationally expensive. Neural networks can often be used to solve highly non-linear problems at a much lower computational cost when multiple inversions are needed from similar data types. We present the first method to perform fully non-linear, rapid and probabilistic Bayesian inversion of travel time data for 2D velocity maps using a mixture density network. We compare multiple methods to estimate probability density functions that represent the tomographic solution, using different sets of prior information and different training methodologies. We demonstrate the importance of prior information in such high dimensional inverse problems due to the curse of dimensionality: unrealistically informative prior probability distributions may result in better estimates of the mean velocity structure, however the uncertainties represented in the posterior probability density functions then contain less information than is obtained when using a less informative prior. This is illustrated by the emergence of uncertainty loops in posterior standard deviation maps when inverting travel time data using a less informative prior, which are not observed when using networks trained on prior information that includes (unrealistic) a priori smoothness constraints in the velocity models. We show that after an expensive program of training the networks, repeated high-dimensional, probabilistic tomography is possible on timescales of the order of a second on a standard desktop computer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.