The physiological role of the A3 adenosine receptor (AR) was explored in cardiac ischaemia, inflammatory diseases and cancer. We report a new fluorophore-conjugated human (h) A3AR antagonist for application to cell-based assays in ligand discovery and for receptor imaging. Fluorescent pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-ylamine (pyrazolo-triazolo-pyrimidine, PTP) and triazolo[1,5-c]quinazolin-5-yl)amine (triazolo-quinazoline, TQ) AR antagonists were compared. A chain-extended and click-conjugated Alexa Fluor-488 TQ derivative (MRS5449) displayed a radioligand binding Ki value of 6.4 ± 2.5 nM in hA3AR-expressing CHO cell membranes. MRS5449 antagonized hA3AR agonist-induced inhibition of cyclic AMP accumulation in a concentration-dependent manner (KB 4.8 nM). Using flow cytometry (FCM), MRS5449 saturated hA3ARs with very high specific-to-nonspecific binding ratio with an equilibrium binding constant 5.15 nM, comparable to the Kd value of 6.65 nM calculated from kinetic experiments. Ki values of known AR antagonists in inhibition of MRS5449 binding in whole cell FCM were consistent with radioligand binding in membranes, but agonist binding was 5–20 fold weaker than obtained with agonist radioligand [125I]I-AB-MECA. Further binding analysis of MRS5549 suggested multiple agonist binding states of the A3AR. Molecular docking predicted binding modes of these fluorescent antagonists. Thus, MRS5449 is a useful tool for hA3AR characterization.
Among the heterocyclic structures identified as potent human A(3) (hA(3)) adenosine receptor's antagonists, we have demonstrated that the new pyrazolo-triazolo-pyrimidines, bearing an aryl group in replacement of the C(2)-furyl ring, not only confer a good pharmacological profile (with significantly enhanced selectivity against other adenosine receptor subytpes) but also overcome the metabolic transformation of the furan ring into toxic intermediates. All the synthesized [2-(para-substituted) phenyl]-pyrazolo-triazolo-pyrimidines showed affinity at the hA(3) receptor in the low nanomolar range. The most potent derivative of the series presented better affinity and excellent selectivity (compound 31, K(i) hA(3) = 0.108 nM; hA(1)/hA(3) = 5200; hA(2A)/hA(3) = 7200), in comparison to the C(2)-furyl counterpart. A receptor-driven molecular modeling investigation, based on a recently proposed model of A(3) receptor derived from the crystallographic structure of human A(2A) receptor, has been carried out in order to support the experimental binding data and to justify the enhanced selectivity against the other receptor subtypes.
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.