Summary Environmental enrichment (EE) replicates mind-body therapy by providing complex housing to laboratory animals to improve their activity levels, behavior and social interactions. Using a Tcf4Het/+ ApcMin/+-mediated model of colon tumorigenesis, we found that EE vastly improved the survival of tumor-bearing animals, with differential effect on tumor load in male compared to female animals. Analysis of Tcf4Het/+ ApcMin/+ males showed drastically reduced expression of circulating inflammatory cytokines and induced nuclear hormone receptor signaling, both of which are common in the wound repair process. Interestingly, EE provoked tumor wound repair resolution through revascularization, plasma cell recruitment and IgA secretion, replacement of glandular tumor structures with pericytes in a process reminiscent of scarring, and normalization of microbiota. These EE-dependent changes likely underlie the profound improvement in survival of colon-tumor-bearing Tcf4Het/+ ApcMin/+ males. Our studies highlight the exciting promise of EE in the design of future therapeutic strategies for colon cancer patients.
BackgroundDominant mutations in both human Presenilin (Psn) genes have been correlated with the formation of amyloid plaques and development of familial early-onset Alzheimer's disease (AD). However, a definitive mechanism whereby plaque formation causes the pathology of familial and sporadic forms of AD has remained elusive. Recent discoveries of several substrates for Psn protease activity have sparked alternative hypotheses for the pathophysiology underlying AD. CBP (CREB-binding protein) is a haplo-insufficient transcriptional co-activator with histone acetly-transferase (HAT) activity that has been proposed to be a downstream target of Psn signaling. Individuals with altered CBP have cognitive deficits that have been linked to several neurological disorders.Methodology/Principal FindingsUsing a transgenic RNA-interference strategy to selectively silence CBP, Psn, and Notch in adult Drosophila, we provide evidence for the first time that Psn is required for normal CBP levels and for maintaining specific global acetylations at lysine 8 of histone 4 (H4K8ac) in the central nervous system (CNS). In addition, flies conditionally compromised for the adult-expression of CBP display an altered geotaxis behavior that may reflect a neurological defect.Conclusions/SignificanceOur data support a model in which Psn regulates CBP levels in the adult fly brain in a manner that is independent of Notch signaling. Although we do not understand the molecular mechanism underlying the association between Psn and CBP, our results underscore the need to learn more about the basic relationship between Psn-regulated substrates and essential functions of the nervous system.
Several recent studies have illustrated the beneficial effects of living in an enriched environment on improving human disease. In mice, environmental enrichment (EE) reduces tumorigenesis by activating the mouse immune system, or affects tumor bearing animal survival by stimulating the wound repair response, including improved microbiome diversity, in the tumor microenvironment. Provided here is a detailed procedure to assess the effects of environmental enrichment on the biodiversity of the microbiome in a mouse colon tumor model. Precautions regarding animal breeding and considerations for animal genotype and mouse colony integration are described, all of which ultimately affect microbial biodiversity. Heeding these precautions may allow more uniform microbiome transmission, and consequently will alleviate non-treatment dependent effects that can confound study findings. Further, in this procedure, microbiota changes are characterized using 16S rDNA sequencing of DNA isolated from stool collected from the distal colon following long-term environmental enrichment. Gut microbiota imbalance is associated with the pathogenesis of inflammatory bowel disease and colon cancer, but also of obesity and diabetes among others. Importantly, this protocol for EE and microbiome analysis can be utilized to study the role of microbiome pathogenesis across a variety of diseases where robust mouse models exist that can recapitulate human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.