Abstract. Northern peatlands are projected to be crucial in future atmospheric methane (CH4) budgets and have a positive feedback on global warming. Fens receive nutrients from catchments via inflowing water and are more sensitive than bogs to variations in their ecohydrology. Yet, due to a lack of data detailing the impacts of moving water on microhabitats and CH4 fluxes in fens, large uncertainties remain with respect to predicting CH4 emissions from these sites under climate changes. We measured CH4 fluxes with manual chambers over three growing seasons (2017–2019) at a northern boreal fen. To address the spatial variation at the site where a stream flows through the long and narrow valley fen, we established sample plots at varying distances from the stream. To link the variations in CH4 emissions to environmental controls, we quantified water levels, peat temperature, dissolved oxygen concentration, vegetation composition, and leaf area index in combination with flux measurements during the growing season in 2019. We found that due to the flowing water, there was a higher water level, cooler peat temperatures, and more oxygen in the peat close to the stream, which also had the highest total leaf area and gross primary production (GPP) values but the lowest CH4 emissions. CH4 emissions were highest at an intermediate distance from the stream where the oxygen concentration in the surface peat was low but GPP was still high. Further from the stream, the conditions were drier and produced low CH4 emissions. Our results emphasize the key role of ecohydrology in CH4 dynamics in fens and, for the first time, show how a stream controls CH4 emissions in a flow-through fen. As valley fens are common peatland ecosystems from the Arctic to the temperate zones, future projections of global CH4 budgets need to take flowing water features into account.
Abstract. Northern peatlands are projected to be crucial in future atmospheric methane (CH4) budgets and have a positive feedback on global warming. Fens receive nutrients from catchments via inflowing water and are more sensitive than bogs to climate change-caused variations in their ecohydrology. Yet, due to a lack of data detailing the impacts of moving water on microhabitats and CH4 fluxes in fens, there remains large uncertainties in predicting CH4 emissions from these sites. We measured CH4 fluxes with manual chambers over three growing seasons (2017–2019) at a northern boreal fen. To address the spatial variation at the site where a stream flows through the long and narrow valley fen, we established sample plots at varying distances from the stream. To link the variations in CH4 emissions to environmental controls, we quantified water levels, peat temperature, dissolved oxygen concentration, vegetation composition and leaf area index in combination with flux measurements during the growing season in 2019. We found that due to the flowing water, there was a higher water level, lower peat temperatures, and more oxygen in the peat close to the stream, which also had the highest total leaf area and gross primary production (GPP) values but the lowest CH4 emissions. Further from the stream, the conditions were drier and produced low CH4 emissions. In contrast, CH4 emissions were highest at an intermediate distance from the stream where the oxygen concentration in the surface peat was low but GPP was still high. Our results emphasise the key role of ecohydrology in CH4 dynamics in fens, and for the first time show how a stream controls CH4 emissions in a flow-through fen. As valley fens are common peatland ecosystems from the arctic to the temperate zones, future projections of global CH4 budgets need to take flowing water features into account.
Abstract. Better monitoring, reporting, and verification (MRV) of the amount, additionality, and persistence of the sequestered soil carbon is needed to understand the best carbon farming practices for different soils and climate conditions, as well as their actual climate benefits or cost efficiency in mitigating greenhouse gas emissions. This paper presents our Field Observatory Network (FiON) of researchers, farmers, companies, and other stakeholders developing carbon farming practices. FiON has established a unified methodology towards monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, modeling, and computing networks. FiON's first phase consists of two intensive research sites and 20 voluntary pilot farms testing carbon farming practices in Finland. To disseminate the data, FiON built a web-based dashboard called the Field Observatory (v1.0, https://www.fieldobservatory.org/, last access: 3 February 2022). The Field Observatory is designed as an online service for near-real-time model–data synthesis, forecasting, and decision support for the farmers who are able to monitor the effects of carbon farming practices. The most advanced features of the Field Observatory are visible on the Qvidja site, which acts as a prototype for the most recent implementations. Overall, FiON aims to create new knowledge on agricultural soil carbon sequestration and effects of carbon farming practices as well as provide an MRV tool for decision support.
Abstract. Better monitoring, reporting and verification (MRV) of the amount, additionality and persistence of the sequestered soil carbon is needed to understand the best carbon farming practices for different soils and climate conditions, as well as their actual climate benefits or cost-efficiency in mitigating greenhouse gas emissions. This paper presents our Field Observatory Network (FiON) of researchers, farmers, companies and other stakeholders developing carbon farming practices. FiON has established a unified methodology towards monitoring and forecasting agricultural carbon sequestration by combining offline and near real-time field measurements, weather data, satellite imagery, modeling and computing networks. FiON’s first phase consists of two intensive research sites and 20 voluntary pilot farms testing carbon farming practices in Finland. To disseminate the data, FiON built a web-based dashboard called Field Observatory (v1.0, fieldobservatory.org). Field Observatory is designed as an online service for near real-time model-data synthesis, forecasting and decision support for the farmers who are able to monitor the effects of carbon farming practices. The most advanced features of the Field Observatory are visible on the Qvidja site which acts as a prototype for the most recent implementations. Overall, FiON aims to create new knowledge on agricultural soil carbon sequestration and effects of carbon farming practices, and provide an MRV tool for decision-support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.