It is widely accepted that global warming is affecting forests near the tree line by increasing tree growth in these cold-limited environments. However, since about 1970, a reduction in tree growth near the tree line has been observed in response to warming and increased drought stress. This reduction in tree growth has been mainly reported in forests of the northern hemisphere but less studied in southern forests. In this study, we investigated tree populations of Nothofagus pumilio located near the arboreal altitudinal limit in the central Patagonian Andes (45-47 S, Aysén region, Chile). In this region, warming has been accompanied by increased drought conditions since the 2000s. We explored whether this climatic variability has promoted or reduced tree growth at the regional scale in tree lines of these broadleaved temperate forests of central Patagonia. We constructed tree-ring chronologies and determined common growth patterns and trends, and then analyzed the influence of recent climate. We detected a significant change in the slope of regional growth trends between the periods 1955-1985 and 1985-2015. We found that positive growth trends in the period 1955-1985 were associated with warmer and drier springs. However, after 1985, we found a stabilization in N. pumilio growth associated with a steady increase in temperature in autumn. Our results support the idea that more frequent warm autumns, with very thin or no snow cover, have stabilized tree growth due to water deficit at the end of the growing season of N. pumilio. The predicted climate change scenario of increasing temperatures and drought in central Patagonia may increase competition among trees for water, particularly at the end of the growing season. Consequently, we could expect a decreasing forest growth trend in central Patagonia, potentially impacting forest dynamics of these southern forests.
Nothofagus alessandrii Espinosa is an endemic species of the coastal Maulino forest of central Chile that has historically been severely threatened by the reduction of its habitat and the isolation of its fragments. In addition, a gradual reduction in precipitation has been observed in recent years across its entire natural distribution area. Although the genus Nothofagus has been extensively analyzed in dendrochronological studies in the Southern Hemisphere, the dendrochronological potential of this species is unknown. In this study, we developed a novel tree-ring chronology of N. alessandrii in order to examine the climate sensitivity of the radial growth and to thus understand its response to climate change in central Chile. Our ring-width chronology showed a series intercorrelation value of 0.48 for the period of 1942–2016 (EPS < 0.85, with 10 trees), showing a strong common growth signal among the trees. N. alessandrii growth was strongly influenced by precipitation from May to November (the austral winter and spring seasons), while the temperature signal was weak. We observed that the radial growth patterns of N. alessandrii chronology showed upward growth trends, with a marked positive slope until the mid-1980s. However, a negative trend was observed for the period of 1985–2016, which was related to the increased drought conditions (rainfall and soil moisture reductions) in past decades and affected the entire natural distribution of the species. We suggest that drier winters and springs would slow the growth of this species. This information is of vital importance to understanding the growth dynamics of N. alessandrii, a critically endangered species, and to take on urgent adaptation and mitigation measures in the face of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.