Recently, the functionality of under oil open microfluidics was expanded from droplet-based operations to include lateral flow in under oil aqueous channels. However, the resolution of the under oil fluidic channels reported so far is still far from comparable with that of closed-channel microfluidics (millimeters versus micrometers). Here, enabled by exclusive liquid repellency and an under oil sweep technique, open microchannels can now be prepared under oil (rather than in air), which shrinks the channel dimensions up to three orders of magnitude compared to previously reported techniques. Spatial trapping of different cellular samples and advanced control of mass transport (i.e., enhanced upper limit of flow rate, steady flow with passive pumping, and reversible fluidic valves) were achieved with open-channel designs. We apply these functional advances to enable dynamic measurements of dispersion from a pathogenic fungal biofilm. The ensemble of added capabilities reshapes the potential application space for open microfluidics.
Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light.Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels.Utilizing this TF and a synthetic promoter we demonstrate that light intensity and duty cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This study allows for rapid generation and prototyping of optogenetic circuits to control gene expression in S. cerevisiae.
K E Y W O R D Slight-inducible promoter, MoClo, optogenetics, Saccharomyces cerevisiae, yeast Jidapas (My) An-adirekkun, Cameron J. Stewart, and Stephanie H. Geller contributed equally to this study.
Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light‐controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc‐finger transcription factor (TF) using light‐induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA‐binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light intensity and duty cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This study allows for rapid generation and prototyping of optogenetic circuits to control gene expression in S. cerevisiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.