Antibody-drug conjugates (ADCs) have evolved as a new class of potent cancer therapeutics. We here report on the development of ADCs with specificity for the B-cell lineage specific (surface) antigen CD22 being expressed in the majority of hematological malignancies. As targeting moiety a previously generated humanized anti-CD22 single-chain variable fragment (scFv) derivative from the monoclonal antibody RFB4 was reengineered into a humanized IgG1 antibody format (huRFB4). Onconase (ranpirnase), a clinically active pancreatic-type ribonuclease, was employed as cytotoxic payload moiety. Chemical conjugation via thiol-cleavable disulfide linkage retained full enzymatic activity and full binding affinity of the ADC. Development of sophisticated purification procedures using size exclusion and ion exchange chromatography allowed the separation of immunoconjugate species with stoichiometrically defined number of Onconase cargos. A minimum of two Onconase molecules per IgG was required for achieving significant in vitro cytotoxicity towards lymphoma and leukemia cell lines. Antibody-drug conjugates with an Onconase to antibody ratio of 3 : 1 exhibited an IC50 of 0.08 nM, corresponding to more than 18,400-fold increased cytotoxicity of the ADC when compared with unconjugated Onconase. These results justify further development of this ADC as a promising first-in-class compound for the treatment of CD22-positive malignancies.
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.