Using cell dynamics computer simulation, we perform a systematic study of thin block copolymer films around a nanoparticle. Lamellar-, cylinder-, and sphere-forming block copolymers are investigated with respect to different film thicknesses, particle radii, and boundary conditions at the film interfaces. The obtained structures include standing lamellae and cylinders, "onions", cylinder "knitting balls", "golf ball", layered spherical, "virus"-like and mixed morphologies with T-junctions and U-type defects. The kinetics of the structure formation and difference with planar thin films are discussed. Our simulations suggest that novel porous nanocontainers can be formed by the coating of a sacrificial nanobead by a block copolymer layer with a well-controlled nanostructure. In addition, first scanning force microscopy experiments on a model system reveal surface structures similar to those predicted by our simulations.
Screening throughput is a key in directed evolution experiments and enzyme discovery. Here, we describe a high-throughput screening platform based on a coupled reaction of glucose oxidase and a hydrolase (Yersinia mollaretii phytase [YmPh]). The coupled reaction produces hydroxyl radicals through Fenton's reaction, acting as initiator of poly(ethyleneglycol)-acrylate-based polymerization incorporating a fluorescent monomer. As a consequence, a fluorescent hydrogel is formed around Escherichia coli cells expressing active YmPh. We achieve five times enrichment of active cell population through flow cytometry analysis and sorting of mixed populations. Finally, we validate the performance of the fluorescent polymer shell (fur-shell) technology by directed phytase evolution that yielded improved variants starting from a library containing 10(7) phytase variants. Thus, fur-shell technology represents a rapid and nonlaborious way of identifying the most active variants from vast populations, as well as a platform for generation of polymer-hybrid cells for biobased interactive materials.
Regular stripes of tobacco mosaic viruses (TMV) with variable line spacings (290 nm to 1 μm) are generated over large areas via printing prealigned TMVs from wrinkled poly(dimethylsiloxane) substrates onto flat substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.