Reaction mechanisms are central to organic chemistry and organic chemistry education. Assessing understanding of reaction mechanisms can be evaluated holistically, wherein the entire mechanism is considered; however, we assert that such an evaluation does not account for how learners variably understand mechanistic components (e.g., nucleophile, electrophile) or steps (e.g., nucleophilic attack, proton transfer). For example, a learner may have proficiency of proton transfer steps without sufficient proficiency of a step where a nucleophile and electrophile interact. Herein, we report the development of a generalized rubric to assess the level of explanation sophistication for nucleophiles in written explanations of organic chemistry reaction mechanisms from postsecondary courses. This rubric operationalizes and applies chemistry education research findings by articulating four hierarchical levels of explanation sophistication: absent, descriptive, foundational, and complex. We provide evidence for the utility of the rubric in an assortment of contexts: (a) stages of an organic chemistry course (i.e., first or second semester), (b) across nucleophile and reaction types, and (c) across prompt variations. We, as well, present a case study detailing how this rubric could be applied in a course to collect assessment data to inform learning and instruction. Our results demonstrate the practical implementation of this rubric to assess understanding of nucleophiles and offer avenues for establishing rubrics for additional mechanistic components, and understanding and evaluating curricula.
A deep understanding of organic chemistry requires a learner to understand many concepts and have fluency with multiple skills. This understanding is particularly necessary for constructing and using mechanisms to explain chemical reactions. Electrophilicity and nucleophilicity are two fundamental concepts to learning and understanding reaction mechanisms. Prior research suggests that learners focus heavily on explicit structural features (e.g., formal charge) rather than implicit features (e.g., an open p-orbital) when identifying and describing the role of electrophiles and nucleophiles in reaction mechanisms; however, these findings come from small-scale, interview-based investigations with a limited number of reaction mechanisms. The work reported herein seeks to further explore the meaning learners ascribe to electrophiles and nucleophiles by evaluating 19 936 written explanations from constructed-response items asking what is happening in reaction mechanisms and why it happens for 85 unique reaction mechanisms across a yearlong postsecondary organic chemistry course. To analyze these data, we developed an electrophile rubric to capture learners’ level of explanation sophistication (Absent, Descriptive, Foundational, and Complex); this electrophile rubric is complementary to a nucleophile rubric previously reported in the literature. Our data show proportional levels of explanation sophistication for electrophiles and nucleophiles (τb = 0.402) across these written explanations of reaction mechanisms. We note that learners’ explanations of nucleophiles tend to be at a higher level than their explanations of electrophiles. While this finding does support prior literature reports, we also found that explanations of mechanisms involving reductions of pi-bonds (e.g., carbonyls) tended to be more sophisticated for electrophiles than for nucleophiles. Overall, our results support the claim that learners are able to discuss both electrophilicity and nucleophilicity; however, learners discuss electrophilicity and nucleophilicity at different levels of sophistication where nucleophilicity predominates for most reaction types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.