Racial and ethnic discrimination persist in science, technology, engineering and mathematics fields, including ecology, evolution and conservation biology (EECB) and related disciplines. Marginalization and oppression as a result of institutional and structural racism continue to create barriers to inclusion for Black people, Indigenous people and people of colour (BIPOC), and remnants of historic racist policies and pseudoscientific theories continue to plague these fields. Many academic EECB departments seek concrete ways to improve the climate and implement anti-racist policies in their teaching, training and research activities. We present a toolkit of evidence-based interventions for academic EECB departments to foster anti-racism in three areas: in the classroom; within research laboratories; and department wide. To spark restorative discussion and action in these areas, we summarize EECB's racist and ethnocentric histories, as well as current systemic problems that marginalize non-white groups. Finally, we present ways that EECB departments can collectively address shortcomings in equity and inclusion by implementing anti-racism, and provide a positive model for other departments and disciplines.
Exposure to human antidepressants has been shown to disrupt locomotion and other foot-mediated mechanisms in aquatic snails. We tested the effect of three selective serotonin reuptake inhibitor (SSRI)- and one selective serotonin-norepinephrine reuptake inhibitor (SNRI)-type antidepressants on the righting response in the marine snail, Ilyanassa obsoleta. All four antidepressants (fluoxetine, sertraline, paroxetine, venlafaxine) significantly increased righting time compared with controls with an exposure time as short as 1 h. Dose responses were nonmonotonic with effects seen mainly at the lowest exposure concentrations and shortest duration. The lowest concentration to show an effect was 3.45 μg/L fluoxetine with a 2-h exposure period and is about 3.71 times higher than environmental concentrations. Our results highlight rapid disruption of another foot-mediated behavior in aquatic snails by SSRI-type antidepressants. We discuss these and other reported nonmonotonic dose responses caused by antidepressants in terms of the various possible physiological mechanisms of action in nontarget aquatic species.
Aim:The aim of this study was to determine if marine mammals follow ecogeographic rules. We examined Bergmann's rule and Allen's rule in two pilot whale species with contrasting latitudinal distributions. Location: Northwest Atlantic Ocean.Taxon: Globicephala spp. Methods:We analysed morphometric data collected from strandings of short-and long-finned pilot whales in the Northwest Atlantic Ocean to assess intraspecific and interspecific variation in surface area to volume ratios (SA:V) of the body core and appendage surface area relative to body core SA (normalized appendage SA) using a novel 3D modelling method. Results:Our results suggest that ecogeographic variation in morphometrics between the two pilot whale species is consistent with morphological adaptations required to balance heat conservation and heat dissipation. Interspecific differences in morphology supported Bergmann's rule for fully grown individuals: the more temperate long-finned pilot whale had a larger body size and lower body core SA:V than the short-finned pilot whale, which has a more tropical distribution. Allen's rule was not supported; when all appendages were considered together, long-finned pilot whales had larger normalized SA than short-finned pilot whales. However, the pectoral flippers were the primary driver of this relationship; while long-finned pilot whales had proportionally larger pectoral flippers, short-finned pilot whales had proportionally larger dorsal fins and flukes. In addition, larger long-finned pilot whales (i.e. males and mature individuals) had proportionally larger pectoral flippers than smaller longfinned pilot whales. Main Conclusions:Pilot whales follow Bergmann's rule but do not follow Allen's rule when fully mature. Thinly insulated appendages in marine mammals can be used to dissipate heat as the core warms, and larger and better insulated marine mammals may require relatively larger appendages in order to offload heat and thermoregulate effectively. Our results provide novel insight into ecogeographic rules and suggest that species in higher latitude climates towards the poles will demonstrate tradeoffs between core body heat conservation and appendage heat dissipation.
Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as ‘key’ questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.