BackgroundThe acute respiratory distress syndrome (ARDS) is a serious disease in critically ill patients that is characterized by pulmonary dysfunctions, hypoxemia and significant mortality. Patients with immunodeficiency (e.g. SCID with T and B cell deficiency) are particularly susceptible to the development of severe ARDS. However, the role of T cells on pulmonary dysfunctions in immune-competent patients with ARDS is only incompletely understood.MethodsWild-type (wt) and RAG2−/− mice (lymphocyte deficient) received intratracheal instillations of LPS (4 mg/kg) or saline. On day 1, 4 and 10 lung mechanics and bronchial hyperresponsiveness towards acetylcholine were measured with the flexiVent ventilation set-up. The bronchoalveolar lavage fluid (BALF) was examined for leukocytes (FACS analysis) and pro-inflammatory cytokines (ELISA).ResultsIn wt mice, lung mechanics, body weight and body temperature deteriorated in the LPS-group during the early phase (up to d4); these alterations were accompanied by increased leukocyte numbers and inflammatory cytokine levels in the BALF. During the late phase (day 10), both lung mechanics and the cell/cytokine homeostasis recovered in LPS-treated wt mice. RAG2−/− mice experienced changes in body weight, lung mechanics, BAL neutrophil numbers, BAL inflammatory cytokines levels that were comparable to wt mice.ConclusionFollowing LPS instillation, lung mechanics deteriorate within the first 4 days and recover towards day 10. This response is not altered by the lack of T lymphocytes suggesting that T cells play only a minor role for the initiation, propagation or recovery of LPS-induced lung dysfunctions or function of T lymphocytes can be compensated by other immune cells, such as alveolar macrophages.Electronic supplementary materialThe online version of this article (10.1186/s12890-018-0741-2) contains supplementary material, which is available to authorized users.
Recently, side effects of plasma expanders like hydroxyethyl starch and gelatine gained considerable attention. Most studies have focused on the kidneys; lungs remain unconsidered. Isolated mouse lungs were perfused for 4 hours with buffer solutions based on hydroxyethyl starch (HES) 130/0.4, HES 200/0.5 or gelatine and ventilated with low or high pressure under physiological pH and alkalosis. Outcome parameters were cytokine levels and the wet-to-dry ratio. For cytokine release, murine and human PCLS were incubated in three different buffers and time points.In lungs perfused with the gelatine based buffer IL-6, MIP-2 and KC increased when ventilated with high pressure. Wet-to-dry ratios increased stronger in lungs perfused with gelatine - compared to HES 130/0.4. Alkalotic perfusion resulted in higher cytokine levels but normal wet-to-dry ratio. Murine PCLS supernatants showed increased IL-6 and KC when incubated in gelatine based buffer, whereas in human PCLS IL-8 was elevated. In murine IPL HES 130/0.4 has lung protective effects in comparison to gelatine based infusion solutions, especially in the presence of high-pressure ventilation. Gelatine perfusion resulted in increased cytokine production. Our findings suggest that gelatine based solutions may have side effects in patients with lung injury or lung oedema.
Peri‐ and postoperative anastomotic leakage from blood vessel anastomosis is a common and potentially life‐threatening complication. As an adjunctive therapy providing an additional layer of safety, a new biodegradable, polyurethane‐based adhesive was developed. It consists of two components: an isocyanate‐functionalized prepolymer and an amino‐based curing agent. The adhesive was investigated in a porcine animal model to seal sutured blood vessel anastomoses of arteries, veins, aortas and prosthetic aortic graft replacements. The material‐determined properties of the adhesive like viscosity, processing and polymerization time as well as bonding strength were well suited for this application. The adhesive stopped perioperative suture‐line bleedings and stayed on all anastomoses until sacrifice. Hematological and serological inflammation marker assessments were unobtrusive. The histological evaluation showed a mild to moderate local tissue reaction to the adhesive constituting a physiological, non‐adverse tissue‐biomaterial interaction. The adhesive did not interfere with vascular wound healing. The adhesive demonstrated to be suitable to improve the outcome of cardiovascular surgeries by securing the classical sutured anastomoses in a fast, easy and safe manner. However, further studies are required to quantitatively evaluate efficacy in terms of anastomotic leakage prevention as well as long‐term tissue compatibility and degradation.
Retrograde lung vascular perfusion can appear in high‐risk surgeries. The present report is the first to study long‐term retrograde perfusion of isolated perfused mouse lungs (IPLs) and to use the tyrosine kinase ephB4 and its ligand ephrinB2 as potential markers for acute lung injury. Mouse lungs were subjected to anterograde or retrograde perfusion with normal‐pressure ventilation (NV) or high‐pressure ventilation (=overventilation, OV) for 4 hours. Outcome parameters were cytokine, ephrinB2 and ephB4 levels in perfusate samples and bronchoalveolar lavage (BAL), and the wet‐to‐dry ratio. Anterograde perfusion was feasible for 4 hours, while lungs receiving retrograde perfusion presented considerable collapse rates. Retrograde perfusion resulted in an increased wet‐to‐dry ratio when combined with high‐pressure ventilation; other physiological parameters were not affected. Cytokine levels in BAL and perfusate, as well as levels of soluble ephB4 in BAL were increased in OV, while soluble ephrinB2 BAL levels were increased in retrograde perfusion. BAL levels of ephrinB2 and ephB4 were also determined in vivo, including mice ventilated for 7 hours with normal‐volume ventilation (NVV) or high‐volume ventilation (HVV) with increased levels of ephB4 in HVV BAL compared to NVV. Retrograde perfusion in IPL is limited as a routine method to investigate effects due to collapse for yet unclear reasons. If successful, retrograde perfusion has an influence on pulmonary oedema formation. In BAL, ephrinB2 seems to be up‐regulated by flow reversal, while ephB4 is a marker for acute lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.