Major quantitative disease resistance loci (QDRLs) are rare in the Phytophthora sojae (Kaufmann and Gerdemann)–soybean [Glycine max (L). Merr.] pathosystem. A major QDRL on chromosome 18 (QDRL‐18) was identified in PI 427105B and PI 427106. QDRL‐18 represents a valuable resistance source for breeding programs. Thus, our objectives were to determine its isolate specificity and measure its effect on yield and resistance to both P. sojae and other soybean pathogens. We characterized near isogenic lines (NILs) developed from F7 recombinant inbred lines heterozygous at QDRL‐18; NILs represent introgressions from PI 427105B, PI 427106, and susceptible ‘OX20‐8’. The introgressions from PI 427105B and PI 427106 increased resistance to P. sojae by 11 to 20% and 35 to 40%, respectively, based on laboratory and greenhouse assays, and increased yield by 13 to 29% under disease conditions. The resistant introgression from PI 427105B was also effective against seven P. sojae isolates with no isolate specificity detected. Based on quantitative polymerase chain reaction assays, NILs with the susceptible introgression had significantly higher relative levels of P. sojae colonization 48 h after inoculation. No pleiotropic effects for resistance to either soybean cyst nematode or Fusarium graminearum were detected. This information improves soybean breeders’ ability to make informed decisions regarding the deployment of QDRL‐18 in their respective breeding programs.
Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine–threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.