N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge
Leukodystrophies are a broad class of genetic disorders that result in disruption or destruction of central myelination. Although the mechanisms underlying these disorders are heterogeneous, there are many common symptoms that affect patients irrespective of the genetic diagnosis. The comfort and quality of life of these children is a primary goal that can complement efforts directed at curative therapies. Contained within this report is a systems-based approach to management of complications that result from leukodystrophies. We discuss the initial evaluation, identification of common medical issues, and management options to establish a comprehensive, standardized care approach. We will also address clinical topics relevant to select leukodystrophies, such as gallbladder pathology and adrenal insufficiency. The recommendations within this review rely on existing studies and consensus opinions and underscore the need for future research on evidence-based outcomes to better treat the manifestations of this unique set of genetic disorders.
While pulmonary hypertension (PH) is a potentially life threatening complication of many inflammatory conditions, an association between Aicardi Goutières syndrome (AGS), a rare genetic cause of interferon (IFN) overproduction, and the development of PH has not been characterized to date. We analyzed the cardiac function of individuals with AGS enrolled in the Myelin Disorders Bioregistry Project using retrospective chart review (n = 61). Additional prospective echocardiograms were obtained when possible (n = 22). An IFN signature score, a marker of systemic inflammation, was calculated through the measurement of mRNA transcripts of type I IFN-inducible genes (interferon signaling genes or ISG). Pathologic analysis was performed as available from autopsy samples. Within our cohort, four individuals were identified to be affected by PH: three with pathogenic gain-of-function mutations in the IFIH1 gene and one with heterozygous TREX1 mutations. All studied individuals with AGS were noted to have elevated IFN signature scores (Mann-Whitney p < .001), with the highest levels in individuals with IFIH1 mutations (Mann-Whitney p < .0001). We present clinical and histologic evidence of PH in a series of four individuals with AGS, a rare interferonopathy. Importantly, IFIH1 and TREX1 may represent a novel cause of PH. Furthermore, these findings underscore the importance of screening all individuals with AGS for PH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.