The development of CDC25 phosphatase inhibitors is an interesting approach toward new antitumor agents, as CDC25 play key roles in cell-cycle regulation and are overexpressed in numerous cancers. We previously reported a novel compound belonging to the thiazolopyrimidine family that inhibits CDC25 activity with an IC(50) value of 13 microM and displays cytotoxic properties against HeLa cells. Structural modifications were subsequently conducted on this new pharmacophore which led to a library of 45 thiazolopyrimidines. Regarding the in vitro effects, 14 compounds inhibit CDC25B with IC(50)<20 microM, with the most efficient inhibitor 44 improving the potency to 4.5 microM. Steady-state kinetics were performed and showed a mixed inhibition pattern for all tested compounds. Furthermore, 44 was able to revert the bypass of genotoxicity-induced G(2) arrest upon CDC25B overexpression, indicating that this compound targets the dual-specificity phosphatase in cultured cells. Finally, the cytotoxic activities of the compounds were determined against two human cancer cell lines. The results indicate that the prostatic LNCaP cell line is more sensitive to these derivatives than the pancreatic adenocarcinoma MiaPaCa-2 line. With its interesting enzymatic and cellular properties, compound 44 appears to be a promising CDC25B inhibitor for further development.
Apoptosis participates in every step of atherogenesis, but the process of clearance of apoptotic cells by phagocytosis has been underestimated. Rapid removal of apoptotic cells is critical for tissue homeostasis, in order to avoid accumulation of necrotic material and subsequent inflammation in the pathological vascular wall. We have demonstrated by RT-PCR, western blot and immunocytofluorescence that vascular smooth muscle cells (VSMCs) express the phosphatidylserine receptor (PSR). We then tested the involvement of PSR in the ability of VSMCs to bind and engulf apoptotic cells. We used a model of senescent erythrocytes, which expose PS after 4 days of culture (85% of cells relative to 8% in freshly isolated erythrocytes). The pseudo-peroxidase activity of haemoglobin contained within erythrocytes allowed us to quantify per se both binding and phagocytosis by VSMCs. We have also shown by light and confocal microscopy that VSMCs were able to ingest aged erythrocytes. Addition of a blocking antibody or transfection of VSMCs by a siRNA directed against PSR reduced the binding and engulfment of aged erythrocytes by more than 90%. These results suggest that PSR is involved in phagocytosis of PS-presenting cells. Incubation of aged erythrocytes with VSMCs also significantly increased the expression of PSR, suggesting that the tethering/ingestion of apoptotic cells triggers this process. Immunostaining for PSR in complicated atherosclerotic plaques shows positivity in the media and macrophage-rich areas. The mechanisms underlying phagocytosis and involving PSR in vivo, within the pathological arterial wall, deserve further investigation.
CDC25 phosphatases play critical roles in cell cycle regulation and are attractive targets for anticancer therapies. Several small non-peptide molecules are known to inhibit CDC25, but many of them appear to form a covalent bond with the enzyme or act through oxidation of the thiolate group of the catalytic cysteine. Structure-based virtual ligand screening computations were performed with FRED, Surflex, and LigandFit, a compound collection of over 310,000 druglike molecules and the crystal structure of CDC25B in order to identify novel classes of ligands. In vitro experiments carried out on a selected list of 1500 molecules led to the discovery of 99 compounds able to inhibit CDC25B activity at 100 microM. Further docking computations were applied, allowing us to propose a binding mode for the most potent molecule (IC50 = 13 microM). Our best compounds represent promising new classes of CDC25 inhibitors that also exhibit antiproliferative properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.