Humoral autoimmunity paralleled by the accumulation of follicular helper T cells (T(FH) cells) is linked to mutation of the gene encoding the RNA-binding protein roquin-1. Here we found that T cells lacking roquin caused pathology in the lung and accumulated as cells of the T(H)17 subset of helper T cells in the lungs. Roquin inhibited T(H)17 cell differentiation and acted together with the endoribonuclease regnase-1 to repress target mRNA encoding the T(H)17 cell-promoting factors IL-6, ICOS, c-Rel, IRF4, IκBNS and IκBζ. This cooperation required binding of RNA by roquin and the nuclease activity of regnase-1. Upon recognition of antigen by the T cell antigen receptor (TCR), roquin and regnase-1 proteins were cleaved by the paracaspase MALT1. Thus, this pathway acts as a 'rheostat' by translating TCR signal strength via graded inactivation of post-transcriptional repressors and differential derepression of targets to enhance T(H)17 differentiation.
The Roquin-1 protein binds to messenger RNAs (mRNAs) and regulates gene expression posttranscriptionally. A single point mutation in Roquin-1, but not gene ablation, increases follicular helper T (Tfh) cell numbers and causes lupus-like autoimmune disease in mice. In T cells, we did not identify a unique role for the much lower expressed paralog Roquin-2. However, combined ablation of both genes induced accumulation of T cells with an effector and follicular helper phenotype. We showed that Roquin-1 and Roquin-2 proteins redundantly repressed the mRNA of inducible costimulator (Icos) and identified the Ox40 costimulatory receptor as another shared mRNA target. Combined acute deletion increased Ox40 signaling, as well as Irf4 expression, and imposed Tfh differentiation on CD4(+) T cells. These data imply that both proteins maintain tolerance by preventing inappropriate T cell activation and Tfh cell differentiation, and that Roquin-2 compensates in the absence of Roquin-1, but not in the presence of its mutated form.
Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.
Dendritic cells (DCs) are important APCs able to induce both tolerance and immunity. Therefore, DCs are attractive targets for immune intervention. However, the ex vivo generation and manipulation of DCs at sufficient numbers and without changing their original phenotypic and functional characteristics are major obstacles. To manipulate DCs in vivo, we developed a novel DC-specific self-inactivating lentiviral vector system using the 5′ untranslated region from the DC-STAMP gene as a putative promoter region. We show that a gene therapy approach with these DC-STAMP-lentiviral vectors yields long-term and cell-selective transgene expression in vivo. Furthermore, transcriptionally targeted DCs induced functional, Ag-specific CD4 and CD8 T cell tolerance in vivo, which could not be broken by viral immunization. Tolerized CTL were unable to induce autoimmune diabetes in a murine autoimmune model system. Therefore, delivering transgenes specifically to DCs by using viral vectors might be a promising tool in gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.