Intensive care clinicians are presented with large quantities of patient information and measurements from a multitude of monitoring systems. The limited ability of humans to process such complex information hinders physicians to readily recognize and act on early signs of patient deterioration. We used machine learning to develop an early warning system for circulatory failure based on a high-resolution ICU database with 240 patientyears of data. This automatic system predicts 90.0% of circulatory failure events (prevalence 3.1%), with 81.8% identified more than two hours in advance, resulting in an area under the receiver operating characteristic curve of 94.0% and area under the precision recall curve of 63.0%. The model was externally validated in a large independent patient cohort.
Highlights d Cities possess a consistent ''core'' set of non-human microbes d Urban microbiomes echo important features of cities and city-life d Antimicrobial resistance genes are widespread in cities d Cities contain many novel bacterial and viral species
The pressure of ever-increasing patient demand and budget restrictions make hospital bed management a daily challenge for clinical staff. Most critical is the efficient allocation of resourceheavy Intensive Care Unit (ICU) beds to the patients who need life support. Central to solving this problem is knowing for how long the current set of ICU patients are likely to stay in the unit. In this work, we propose a new deep learning model based on the combination of temporal convolution and pointwise (1x1) convolution, to solve the length of stay prediction task on the eICU and MIMIC-IV critical care datasets. The model -which we refer to as Temporal Pointwise Convolution (TPC) -is specifically designed to mitigate common challenges with Electronic Health Records, such as skewness, irregular sampling and missing data. In doing so, we have achieved significant performance benefits of 18-68% (metric and dataset dependent) over the commonly used Long-Short Term Memory (LSTM) network, and the multi-head self-attention network known as the Transformer. By adding mortality prediction as a side-task, we can improve performance further still, resulting in a mean absolute deviation of 1.55 days (eICU) and 2.28 days (MIMIC-IV) on predicting remaining length of stay.
CCS CONCEPTS• Applied computing → Health informatics; • Computing methodologies → Neural networks; Multi-task learning; • Mathematics of computing → Time series analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.