Parkinson's disease is a progressive neurodegenerative disorder, caused in part by the loss of dopamine (DA) neurons in the substantia nigra (SN). Neurotrophic factors have been shown to increase the basal survival of DA neurons in vitro, as well as to protect the neurons from some toxins under certain in vitro conditions and in animal models. Although these factors have often been tested individually, they have rarely been studied in combinations. We therefore examined the effect of such combinations after acute exposure to the toxin 1-methyl-4-phenylpyridinium (MPP(+) ) using dissociated postnatal rat midbrain cultures isolated from SN and ventral tegmental area (VTA). We found that significant loss of DA neurons in the SN occurred with an LC50 of between 1 and 10 μm, whereas the LC50 of DA neurons from the VTA was approximately 1000-fold higher. We did not observe neuroprotection against MPP(+) by individual exposure to glial cell-line derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF), transforming growth factor beta (TGFβ), basic fibroblast growth factor (FGF-2) or growth/differentiation factor 5 (GDF5) at concentrations of 100 or 500 ng/mL. Combinations of two, three or four neurotrophic factors were also ineffective. However, when the SN cultures were exposed to a combination of all five neurotrophic factors, each at a concentration of 100 ng/mL, we observed a 30% increase in DA neuron survival in the presence of 10 and 500 μm MPP(+) . These results may be relevant to the use of neurotrophic factors as therapeutic treatments for Parkinson's disease.
The extracellular signal-regulated kinases (ERKs) 1, 2, and 5 have been shown to play distinct roles in proliferation, differentiation, and neuronal viability. In this study, we examined ERK1, 2, and 5 expression and activation in the substantia nigra (SN), striatum (STR), and ventral tegmental area (VTA) during aging. An age-related decrease in phosphorylated ERK5 was observed in the SN and STR, whereas an increase in total ERK1 was observed in all three regions. In primary cultures of the SN and VTA, inhibition of ERK5 but not ERK1 and 2 significantly decreased DA neuronal viability. These data suggest that ERK5 is essential for the basal survival of SN and VTA dopaminergic neurons. These are the first studies to examine ERK1, 2, and 5 expression and activation in the SN, STR, and VTA during aging and the relative roles of ERK1, 2, and 5 in basal survival of SN and VTA dopaminergic neurons. These data raise the possibility that a decline ERK5 signaling may play a role in age-related impairments in dopaminergic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.